(2005•太原)如圖,在正方形ABCD中,點E、F分別在邊BC,CD上,如果AE=4,EF=3,AF=5,那么正方形ABCD的面積等于( )

A.
B.
C.
D.
【答案】分析:因為AE=4,EF=3,AF=5,AE2+EF2=AF2,所以∠AEF=90°,可證△ABE∽△ECF,從而可得AB:EC=AE:EF=4:3,即EC==BC,BE==,在直角三角形ABE中,AB2+BE2=AE2,AB2+=16,AB2=,所以正方形ABCD面積=AB2=
解答:解:∵AE=4,EF=3,AF=5
∴AE2+EF2=AF2,∴∠AEF=90°
∴∠AEB+∠FEC=90°
∵正方形ABCD
∴∠ABE=∠FCE=90°
∵∠CFE+∠CEF=∠EAB+∠AEB=90°
∴∠FEC=∠EAB
∴△ABE∽△ECF
∴EC:AB=EF:AE=3:4,即EC==BC
∴BE==
∵AB2+BE2=AE2,∴AB2+=16,AB2=
∴正方形ABCD面積=AB2=
故選C.
點評:本題綜合考查了正方形的性質和勾股定理的應用,本題中利用勾股定理得出△AEF是直角三角形是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2005年全國中考數(shù)學試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•太原)如圖,直線y=x+2與y軸交于點A,與x軸交于點B,⊙C是△ABO的外接圓(O為坐標原點),∠BAO的平分線交⊙C于點D,連接BD、OD.
(1)求證:BD=AO;
(2)在坐標軸上求點E,使得△ODE與△OAB相似;
(3)設點A′在OAB上由O向B移動,但不與點O、B重合,記△OA′B的內心為I,點I隨點A′的移動所經過的路程為l,求l的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山西省太原市中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2005•太原)如圖,⊙O2與半圓Ol內切于點C,與半圓的直徑AB切于點D,若AB=6,⊙O2的半徑為1,則∠ABC的度數(shù)為    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山西省太原市中考數(shù)學試卷(大綱卷)(解析版) 題型:填空題

(2005•太原)如圖是比例尺為1:200的鉛球場地的示意圖,鉛球投擲圈的直徑為2.135m,體育課上,某生推出的鉛球落在投擲區(qū)的點A處,他的鉛球成績約為    m(精確到0.1m).

查看答案和解析>>

科目:初中數(shù)學 來源:2005年山西省太原市中考數(shù)學試卷(大綱卷)(解析版) 題型:選擇題

(2005•太原)如圖,兩條直線a、b被第三條直線c所截,如果a∥b,∠1=50°,那么∠2的度數(shù)為( )

A.130°
B.100°
C.80°
D.40°

查看答案和解析>>

同步練習冊答案