【題目】在《九章算術》中有求三角形面積公式“底乘高的一半”,但是在實際丈量土地面積時,量出高并非易事,所以古人想到了能否利用三角形的三條邊長來求面積.我國南宋著名的數(shù)學家秦九韶(年—年)提出了“三斜求積術”,闡述了利用三角形三邊長求三角形面積方法,簡稱秦九韶公式.在海倫(公元年左右,生平不詳)的著作《測地術》中也記錄了利用三角形三邊長求三角形面積的方法,相傳這個公式最早是由古希臘數(shù)學家阿基米德(公元前年—公元前年)得出的,故我國稱這個公式為海倫一秦九韶公式.它的表達為:三角形三邊長分別為、、,則三角形的面積(公式里的為半周長即周長的一半).
請利用海倫一秦九韶公式解決以下問題:
()三邊長分別為、、的三角形面積為__________.
()四邊形中,,,,,,四邊形的面積為__________.
()五邊形中,,,,,,,五邊形的面積為__________.
科目:初中數(shù)學 來源: 題型:
【題目】某單位準備印制一批證書,現(xiàn)有兩個印刷廠可供選擇,甲廠費用分為制版費和印刷費兩部分,乙廠直接按印刷數(shù)量收取印刷費.甲乙兩廠的印刷費用y(千元)與證書數(shù)量x(千個)的函數(shù)關系圖象分別如圖中甲、乙所示.
(1)填空:甲廠的制版費是________千元,當x≤2(千個)時乙廠證書印刷單價是________元/個;
(2)求出甲廠的印刷費y甲與證書數(shù)量x的函數(shù)關系式,并求出其證書印刷單價;
(3)當印制證書8千個時,應選擇哪個印刷廠節(jié)省費用,節(jié)省費用多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC,按如下步驟作圖:第一步,分別以點A、D為圓心,以大于的長為半徑在AD的兩側作弧,交于兩點M、N;第二步,連結MN,分別交AB、AC于點E、F;第三步,連結DE、DF..若BD=6,AF=4,CD=3,則BE的長是( )
A. 2 B. 4 C. 6 D. 8
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y=(x>0)的圖象分別交于點 A(m,3)和點B(6,n),與坐標軸分別交于點C和點D.
(1)求直線AB的解析式;
(2)若點P是x軸上一動點,當△COD與△ADP相似時,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)的圖象與軸交于點,與軸交于點,點的坐標為,連接.
()求證:是等邊三角形.
()點在線段的延長線上,連接,作的垂直平分線,垂足為點,并與軸交于點,分別連接、.
①如圖,若,直接寫出的度數(shù).
②若點在線段的延長線上運動(與點不重合),的度數(shù)是否變化?若變化,請說明理由;若不變,求出的度數(shù).
()在()的條件下,若點從點出發(fā)在的延長線上勻速運動,速度為每秒個單位長度,與交于點,設的面積為,的面積為,,運動時間為秒時.求關于的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,雙曲線y=與直線y=ax+b相交于點A(1,5),B(m,-2).
⑴分別求雙曲線、直線的解析式;
⑵直接寫出不等式ax+b>的解集.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l1:y1=x+m與y軸交于點A(0,6),直線l2:y2=kx+1分別與x軸交于點B(-2,0),與y軸交于點C.兩條直線相交于點D,連接AB.
(1)求兩直線交點D的坐標;
(2)求△ABD的面積;
(3)根據(jù)圖象直接寫出y1>y2時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)定義一種新運算:“※”,使得a※b=4ab
(1)求4※7的值;
(2)求x※x+2※x﹣2※4=0中x的值;
(3)不論x是什么數(shù),總有a※x=x,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質地完全一樣的5個紅球和1個白球,從中隨機抽出一個球,一定是紅球
B.天氣預報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com