精英家教網 > 初中數學 > 題目詳情

【題目】如圖,△ABC中,BD、BE分別是高和角平分線,點F在CA的延長線上,FH⊥BE,交BD于點G,交BC于點H;下列結論:①∠DBE=∠F;②2∠BEF=∠BAF+∠C;③∠F=∠BAC-∠C;④∠BGH=∠ABE+∠C,其中正確的結論有___________

【答案】①②③④

【解析】①∵BD⊥FD,

∴∠FGD+∠F=90°,

∵FH⊥BE,

∴∠BGH+∠DBE=90°,

∵∠FGD=∠BGH,

∴∠DBE=∠F,

①正確;

②∵BE平分∠ABC,

∴∠ABE=∠CBE,

∠BEF=∠CBE+∠C,

∴2∠BEF=∠ABC+2∠C,

∠BAF=∠ABC+∠C,

∴2∠BEF=∠BAF+∠C,

②正確;

③∠ABD=90°-∠BAC,

∠DBE=∠ABE-∠ABD=∠ABE-90°+∠BAC,

∵∠CBE=90°-∠C,

∴∠DBE=∠BAC-∠C,

由①得,∠DBE=∠F,

∴∠F=∠BAC-∠C,

③正確;

④∵∠AEB=∠EBC+∠C,

∵∠ABE=∠CBE,

∴∠AEB=∠ABE+∠C,

∵BD⊥FC,FH⊥BE,

∴∠BGH=∠ABE,

∴∠BGH=∠ABE+∠C,

④正確,

故答案為:①②③④.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】2017年5月14日15日,“一帶一路”國際合作高峰壇在北京行,本屆壇期間,中國同30多個國家簽署經貿合作協(xié)議,某廠準備生產甲、乙兩種商品共8萬件銷“一帶一路”沿線國家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入1500元.

(1)甲商品與乙種商品的銷售單價各多少元?

(2)若甲、乙兩種商品的銷售總收入不低于5400萬元,則至少銷售甲種商品多少萬件?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形AOCB的兩邊OA、OC分別在x軸和y軸上,且OA=2,OC=1.在第二象限內,將矩形AOCB以原點O為位似中心放大為原來的 倍,得到矩形A1OC1B1 , 再將矩形A1OC1B1以原點O為位似中心放大 倍,得到矩形A2OC2B2…,以此類推,得到的矩形AnOCnBn的對角線交點的坐標為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】ABC ,已知點 D,E,F 分別是 BC,AD,CE 邊上的中點, SABC=4cm2 SBEF 的值為(

A. 2cm2 B. 1cm2 C. 0.5cm2 D. 0.25cm2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:在平行四邊形ABCD中,點E在直線AD上,AE= AD,連接CE交BD于點F,則EF:FC的值是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,每個小正方形的邊長為 1 個單位,每個小方格的頂點叫格點.

(1)畫出ABC AB 邊上的中線 CD;

(2)畫出ABC 向右平移 4 個單位后得到的A1B1C1;

(3)圖中 AC A1C1 的關系是:

(4)圖中ABC 的面積是

(5)能使BCE 面積為 3 的格點 E 個.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】先化簡,再求值:(1+ )÷ ,其中x=4﹣tan45°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某校校園內有一個大正方形花壇,如圖甲所示,它由四個邊長為3米的小正方形組成,且每個小正方形的種植方案相同.其中的一個小正方形ABCD如圖乙所示,DG=1米,AE=AF=x米,在五邊形EFBCG區(qū)域上種植花卉,則大正方形花壇種植花卉的面積y與x的函數圖象大致是( 。

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案