【題目】已知直線l1:y=x+3與x軸交于點A,與y軸交于點B,且與雙曲線y= 交于點C(1,a).

(1)試確定雙曲線的函數(shù)表達(dá)式;
(2)將l1沿y軸翻折后,得到l2 , 畫出l2的圖象,并求出l2的函數(shù)表達(dá)式;
(3)在(2)的條件下,點P是線段AC上點(不包括端點),過點P作x軸的平行線,分別交l2于點M,交雙曲線于點N,求SAMN的取值范圍.

【答案】
(1)

解:令x=1代入y=x+3,

∴y=1+3=4,

∴C(1,4),

把C(1,4)代入y= 中,

∴k=4,

∴雙曲線的解析式為:y=


(2)

解:如圖所示,

設(shè)直線l2與x軸交于點D,

由題意知:A與D關(guān)于y軸對稱,

∴D的坐標(biāo)為(3,0),

設(shè)直線l2的解析式為:y=ax+b,

把D與B的坐標(biāo)代入上式,

得: ,

∴解得: ,

∴直線l2的解析式為:y=﹣x+3


(3)

解:設(shè)M(3﹣t,t),

∵點P在線段AC上移動(不包括端點),

∴0<t<4,

∴PN∥x軸,

∴N的縱坐標(biāo)為t,

把y=t代入y=

∴x=

∴N的坐標(biāo)為( ,t),

∴MN= ﹣(3﹣t)= +t﹣3,

過點A作AE⊥PN于點E,

∴AE=t,

∴SAMN= AEMN,

= t( +t﹣3)

= t2 t+2

= (t﹣ 2+ ,

由二次函數(shù)性質(zhì)可知,當(dāng)0≤t≤ 時,SAMN隨t的增大而減小,當(dāng) <t≤4時,SAMN隨t的增大而增大,

∴當(dāng)t= 時,SAMN可取得最小值為 ,

當(dāng)t=4時,SAMN可取得最大值為4,

∵0<t<4

≤SAMN<4


【解析】本題考查函數(shù)的綜合問題,涉及待定系數(shù)法求一次函數(shù)解析式和反比例函數(shù)解析式,三角形面積等知識,由于有動點,所以難度較高,需要學(xué)生利用參數(shù)去表示相關(guān)坐標(biāo),然后求出函數(shù)關(guān)系式.(1)令x=1代入一次函數(shù)y=x+3后求出C的坐標(biāo),然后把C代入反比例函數(shù)解析式中即可求出k的值;(2)設(shè)直線l2與x軸交于D,由題意知,A與D關(guān)于y軸對稱,所以可以求出D的坐標(biāo),再把B點坐標(biāo)代入y=ax+b即可求出直線l2的解析式;(3)設(shè)M的縱坐標(biāo)為t,由題意可得M的坐標(biāo)為(3﹣t,t),N的坐標(biāo)為( ,t),進(jìn)而得MN= +t﹣3,又可知在△ABM中,MN邊上的高為t,所以可以求出SAMN與t的關(guān)系式.
【考點精析】通過靈活運用確定一次函數(shù)的表達(dá)式和三角形的面積,掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;三角形的面積=1/2×底×高即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知某道判斷題的五個選項中有兩個正確答案,該題滿分為4分,得分規(guī)則是:選出兩個正確答案且沒有選錯誤答案得4分;只選出一個正確答案且沒有選錯誤答案得2分;不選或所選答案中有錯誤答案得0分.
(1)任選一個答案,得到2分的概率是;
(2)請利用樹狀圖或表格求任選兩個答案,得到4分的概率;
(3)如果小明只能確認(rèn)其中一個答案是正確的,此時的最佳答題策略是
A.只選確認(rèn)的那一個正確答案
B.除了選擇確認(rèn)的那一個正確答案,再任選一個
C.干脆空著都不選了.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)衛(wèi)生防疫部門要求,游泳池必須定期換水,清洗.某游泳池周五早上8:00打開排水孔開始排水,排水孔的排水速度保持不變,期間因清洗游泳池需要暫停排水,游泳池的水在11:30全部排完.游泳池內(nèi)的水量Q(m2)和開始排水后的時間t(h)之間的函數(shù)圖象如圖所示,根據(jù)圖象解答下列問題:

(1)暫停排水需要多少時間?排水孔排水速度是多少?
(2)當(dāng)2≤t≤3.5時,求Q關(guān)于t的函數(shù)表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是線段AB上的點,C,D分別是線段OA,OB的中點,小明很輕松地求得CD=AB.他在反思過程中突發(fā)奇想:若點O在線段AB的延長線上或在直線AB,則原有的結(jié)論“CD=AB”仍然成立嗎?請幫小明解決此問題(當(dāng)點O在線段AB的延長線上時,請畫圖分析該結(jié)論是否成立,并說明理由;當(dāng)點O在直線AB外時,作出圖形,通過度量說明該結(jié)論是否成立).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,以AB為直徑的⊙O與BC交于點D,與AC交于點E,連OD交BE于點M,且MD=2,則BE長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:(﹣ 1+3tan30°﹣ +(﹣1)2016

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長為3cm,P,Q分別從B,A出發(fā)沿BC,AD方向運動,P點的運動速度是1cm/秒,Q點的運動速度是2cm/秒,連接A,P并過Q作QE⊥AP垂足為E.

(1)求證:△ABP∽△QEA;
(2)當(dāng)運動時間t為何值時,△ABP≌△QEA;
(3)設(shè)△QEA的面積為y,用運動時刻t表示△QEA的面積y(不要求考t的取值范圍).(提示:解答(2)(3)時可不分先后)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王老師家買了一套新房,其結(jié)構(gòu)如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米?

(2)如果地磚的價格為每平方米x,木地板的價格為每平方米3x那么王老師需要花多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點A(m,3),與x軸交于點C.
(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案