如圖,在△ABC中,AB=CB,∠ABC=900,D為AB延長線上一點,點E在BC邊上,且BE=BD,連結AE、DE、DC.
①求證:△ABE≌△CBD;
②若∠CAE=300,求∠BDC的度數(shù).
①見解析②750
【解析】解:①證明:∵∠ABC=900,D為AB延長線上一點,∴∠ABE=∠CBD=90°。
在△ABE和△CBD中,∵,
∴△ABE≌△CBD(SAS)。
②∵AB=CB,∠ABC=900,∴∠CAB=450。
∵∠CAE=300,∴∠BAE=∠CAB-∠CAE=45°-300=150。
∵△ABE≌△CBD,∴∠BCD=∠BAE=150。
∴∠BDC=900-∠BCD=900-150=750。
①求出∠ABE=∠CBD,然后利用“邊角邊”證明△ABE和△CBD全等即可。
②先根據(jù)等腰直角三角形的銳角都是45°求出∠CAB,再求出∠BAE,然后根據(jù)全等三角形對應角相等求出∠BCD,再根據(jù)直角三角形兩銳角互余其解即可。
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
A、
| ||||
B、(
| ||||
C、
| ||||
D、
|
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com