【題目】(觀察探索)用“=”完成以下填空,并觀察兩邊算式,探索規(guī)律:

(猜想證明)請用一個含字母a、b的式子表示上以規(guī)律,并證明結(jié)論的正確性;

(應(yīng)用拓展)比較代數(shù)式m2-3mn+1mn-4n2的大小,并說明理由.

【答案】1>;=;(2a2+b2≥2ab;(3m2-3m+1>mn-4n2

【解析】

1)猜想證明:觀察幾個式子的規(guī)律得到結(jié)論:兩個數(shù)的平方和大于或等于這兩個數(shù)積的2.運用完全平方公式和平方數(shù)非負(fù)性質(zhì)可證明這個結(jié)論.

(2)運用求差法比較m2-3m+1的大小. m2-3m+1-(mn-4n2)整理后配方可知其最小值.

解:(1)猜想:

2×(-3) ×4=-24

2×(-3) ×4

=72 2×(-6) ×(-6)=72

=2×(-6) ×(-6)

用字母表示這個規(guī)律: a2+b2≥2ab

證明:=-2ab+ b2

≥0

-2ab+ b2≥0

a2+b2≥2ab

(2) 應(yīng)用拓展:

m2-3m+1-(mn-4n2)

=m2-3m+1-mn+4n2

=m2-4mn+4n2+1

=(m-2n)2+1

(m-2n)2≥0

(m-2n)2+1>0

所以m2-3m+1>mn-4n2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個三角形一條邊的平方等于另兩條邊的乘積,我們把這個三角形叫做比例三角形.

1)已知△ABC是比例三角形,AB2,BC3,請直接寫出所有滿足條件的AC的長;

2)如圖1,在四邊形ABCD中,ADBC,對角線BD平分∠ABC,∠BAC=∠ADC

①求證:△ABC∽△DCA;②求證:△ABC是比例三角形;

3)如圖2,在(2)的條件下,當(dāng)∠ADC90°時,求出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的七邊形ABCDEFG中,∠1、∠2、∠3、∠4 四個角的外角和為180°,5 的外角為60°,BP、DP 分別平分∠ABC、∠CDE,則BPD 的度數(shù)是( 。

A. 130° B. 120° C. 110° D. 100°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】墊球是排球隊常規(guī)訓(xùn)練的重要項目之一.下列圖表中的數(shù)據(jù)是甲、乙、丙三人每人十次墊球測試的成績.測試規(guī)則為連續(xù)接球10個,每墊球到位1個記1分.

運動員甲測試成績表

測試序號

1

2

3

4

5

6

7

8

9

10

成績(分)

7

6

8

7

7

5

8

7

8

7

(1)寫出運動員甲測試成績的眾數(shù)和中位數(shù);

(2)在他們?nèi)酥羞x擇一位墊球成績優(yōu)秀且較為穩(wěn)定的接球能手作為自由人,你認(rèn)為選誰更合適?為什么? (參考數(shù)據(jù):三人成績的方差分別為、)

(3)甲、乙、丙三人相互之間進(jìn)行墊球練習(xí),每個人的球都等可能的傳給其他兩人,球最先從甲手中傳出,第三輪結(jié)束時球回到甲手中的概率是多少?(用樹狀圖或列表法解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一張長方形的紙對折,如圖所示,可得到一條折痕(圖中虛線),繼續(xù)對折,對折時每次折痕與上次的折痕保持平行,連續(xù)對折三次后,可以得到7條折痕,

1)折一折,數(shù)一數(shù),連續(xù)對折四次后,可以得到多少條折痕?

2)想一想,如果對折n次,可以得到多少條折痕?

3)如果能對折10次,可以得到多少條折痕?

4)如果對折n次,可以得到多少個一樣大小的小長方形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了豐富課外活動,某校將購買一些乒乓球拍和乒乓球,某商場銷售一種乒乓球拍和乒乓球,乒乓球拍每副定價80元,乒乓球每盒定價20元,“國慶節(jié)”期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案.

方案一:買一副乒乓球拍送一盒乒乓球;

方案二:乒乓球拍和乒乓球都按定價的90%付款.

某校要到該商場購買乒乓球拍20副,乒乓球(>20且為整數(shù))

1)若按方案一購買,需付款 (用含的整式表示,要化簡); 若按方案二購買,需付款 (用含的整式表示,要化簡).

2)若30,通過計算說明此時按哪種方案購買較為合算?

3)當(dāng)30時,你能給出一種更為省錢的購買方案嗎?試寫出你的購買方法.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,P從點A出發(fā),沿折線AB-BC向終點C運動,在AB上以每秒8個單位長度的速度運動,在BC上以每秒2個單位長度的速度運動.動點Q從點C出發(fā),沿CA方向以每秒個單位長度的速度運動.P、Q兩點同時出發(fā),當(dāng)點P停止時,點Q也隨之停止.設(shè)點P的運動時間為t秒.

(1)用含t的代數(shù)式表示線段AQ的長.

(2)當(dāng)點P在線段AB上運動時,求PQ與△ABC一邊垂直時t的值.

(3)設(shè)△APQ的面積為SS>0),求St的函數(shù)關(guān)系式.

(4)當(dāng)△APQ是以PQ為腰的等腰三角形時,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABCD,直線EF分別交AB、CD于點EF,EG平分∠AEFFH平分∠EFD.求證:EGFH

請完成以下證明過程:

證明:∵ABCD(已知)

∴∠AEF=EFD__________________

EG平分∠AEF,FH平分∠EFD__________

∴∠___AEF,___= EFD____________

∴∠_____=______(等量代換)

EGFH__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方形OABC中,O為平面直角坐標(biāo)系的原點,點A坐標(biāo)為(a0),點C的坐標(biāo)為(0b),且ab滿足|b6|0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著OCBAO的線路移動.

1a______________b_____________,點B的坐標(biāo)為_______________;

2)當(dāng)點P移動4秒時,請指出點P的位置,并求出點P的坐標(biāo);

3)在移動過程中,當(dāng)點Px軸的距離為5個單位長度時,求點P移動的時間.

查看答案和解析>>

同步練習(xí)冊答案