【題目】在平面直角坐標系中,A(3,0)、B(a,2)、C(0,m),D(n,0),且m2+n2=4,若E為CD中點.則AB+BE的最小值為( 。
A. 3 B. 4 C. 5 D. 2
科目:初中數(shù)學 來源: 題型:
【題目】小麗和小華想利用摸球游戲決定誰去參加市里舉辦的書法比賽,游戲規(guī)則是:在一個不透明的袋子里裝有除數(shù)字外完全相同的4個小球,上面分別標有數(shù)字2,3,4,5.一人先從袋中隨機摸出一個小球,另一人再從袋中剩下的3個小球中隨機摸出一個小球.若摸出的兩個小球上的數(shù)字和為偶數(shù),則小麗去參賽;否則小華去參賽.
(1)用列表法或畫樹狀圖法,求小麗參賽的概率.
(2)你認為這個游戲公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線l:y=x+1交x軸于點B,交y軸于點A,過點A作AB1⊥AB交x軸于點B1,過點B1作B1A1⊥x軸交直線l于點A2…依次作下去,則點Bn的橫坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F分別是AD和AD延長線上的點,且DE=DF,連接BF,CE.下列說法:①△BDF≌△CDE;②CE=BF; ③BF∥CE;④△ABD和△ACD周長相等.其中正確的有___________(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=120°,AC的垂直平分線交BC于點D,垂足為E,若DE=2cm,則BD的長為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有10個數(shù)據(jù)x1,x2,…x10,已知它們的和為2018,當代數(shù)式(x﹣x1)2+(x﹣x2)2+…+(x﹣x10)2取得最小值時,x的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2﹣9ax+18a的圖象與x軸交于A,B兩點(A在B的左側),圖象的頂點為C,直線AC交y軸于點D.
(1)連接BD,若∠BDO=∠CAB,求這個二次函數(shù)的表達式;
(2)是否存在以原點O為對稱軸的矩形CDEF?若存在,求出這個二次函數(shù)的表達式,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線:與直線:交于點,則______.
【答案】-1
【解析】
將點A的坐標代入兩直線解析式得出關于m和b的方程組,解之可得.
解:由題意知,
解得,
故答案為:.
【點睛】
本題主要考查兩直線相交或平行問題,解題的關鍵是掌握兩直線的交點坐標必定同時滿足兩個直線解析式.
【題型】填空題
【結束】
11
【題目】如圖,長方形紙片ABCD中,AB=4,BC=6,將△ABC沿AC折疊,使點B落在點E處,CE交AD于點F,則△AFC的面積等于___.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點.
(1)求證:△ACE≌△BCD;
(2)求證:2CD2=AD2+DB2.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com