【題目】已知ADBCABCD,E在線段BC延長線上,AE平分∠BAD.連接DE,若∠ADE3CDE,∠AED60°.

1)求證:∠ABC=∠ADC

2)求∠CDE的度數(shù).

【答案】1)詳見解析;(215°.

【解析】

1)根據(jù)平行線的性質(zhì)即可得到答案;

2)根據(jù)∠ADE3CDE,設∠CDEx°,∠ADE3x°,∠ADC2x°,根據(jù)平行線的性質(zhì)得出方程90x+60+3x180,求出x即可.

解(1)∵ABCD,

∴∠ABC=∠DCE,

ADBC,

∴∠ADC=∠DCE

∴∠ABC=∠ADC,

2)設∠CDEx,則∠ADC2x,

ABCD

∴∠BAD180°﹣2x,

AE平分∠BAD,

∴∠EADBAD90°﹣x,

ADBC

∴∠BEA=∠EAD90°﹣x,

∴∠BED+ADE180°,

90°﹣x+60°+3x180°,

x15°,

∴∠CDE15°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是( )

A.2
B.2+
C.2
D.2+

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知線段MN=8,C是線段MN上一動點,在MN的同側分別作等邊△CMD和等邊△CNE.
(1)如圖①,連接DN與EM,兩條線段相交于點H,求證ME=DN,并求∠DHM的度數(shù);

(2)如圖②,過點D、E分別作線段MN的垂線,垂足分別為F、G,問:在點C運動過程中,DF+EG的長度是否為定值,如果是,請求出這個定值,如果不是請說明理由;

(3)當點C由點M移到點N時,點H移到的路徑長度為(直接寫出結果)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,動點M、N同時從原點出發(fā)沿數(shù)軸做勻速運動,己知動點M、N的運動速度比是1:2(速度單位:1個單位長度/秒),設運動時間為t秒.

(1)若動點M向數(shù)軸負方向運動,動點N向數(shù)軸正方向運動,當t=2秒時,動點M運動到A點,動點N運動到B點,且AB=12(單位長度).

①在直線l上畫出A、B兩點的位置,并回答:點A運動的速度是   (單位長度/秒);點B運動的速度是   (單位長度/秒).

②若點P為數(shù)軸上一點,且PA﹣PB=OP,求的值;

(2)由(1)中A、B兩點的位置開始,若M、N同時再次開始按原速運動,且在數(shù)軸上的運動方向不限,再經(jīng)過幾秒,MN=4(單位長度)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果批發(fā)商場經(jīng)銷一種高檔水果,如果每千克盈利10元,每天可售出500千克.經(jīng)市場調(diào)查發(fā)現(xiàn),在進貨價不變的情況下,若每千克漲價1元,日銷售量將減少20千克.
(1)現(xiàn)該商場要保證每天盈利6 000元,同時又要顧客得到實惠,那么每千克應漲價多少元?
(2)若該商場單純從經(jīng)濟角度看,每千克這種水果漲價多少元,能使商場獲利最多?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示的坐標系中,ABC的三個頂點的坐標依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).

1)請在這個坐標系中作出ABC關于y軸對稱的A1B1C1

2)分別寫出點A1、B1、C1的坐標.

3)求A1B1C1的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,C為BA延長線上一點,CD切半圓O于點D。連結OD,作BE⊥CD于點E,交半圓O于點F。已知CE=12,BE=9

(1)求證:△COD∽△CBE;
(2)求半圓O的半徑 的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,,PA點出發(fā)沿路徑向終點運動,終點為B點;點QB點出發(fā)沿路徑向終點運動,終點為APQ分別以1和3的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過PQE問:點P運動多少時間時,QFC全等?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹情況進行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:

(1)這四個班共植樹棵;
(2)請你在答題卡上補全兩幅統(tǒng)計圖;
(3)求圖1中“甲”班級所對應的扇形圓心角的度數(shù);
(4)若四個班級植樹的平均成活率是95%,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵?

查看答案和解析>>

同步練習冊答案