如圖,扇形OAB,∠AOB=90°,⊙P與OA、OB分別相切于點F、E,并且與弧AB切于點C,則扇形OAB的面積與⊙P的面積比是   
【答案】分析:根據(jù)題意,構造直角三角形求得扇形的半徑與圓的半徑的關系,進而根據(jù)面積的求法求得扇形OAB的面積與⊙P的面積比.
解答:解:連接OC,PE.
設PE為1,易得OP=,那么OC=+1.
∴扇形OAB的面積=;
⊙P的面積=π,
∴扇形OAB的面積與⊙P的面積比是
點評:連接圓心和切點是常用的輔助線作法,本題的關鍵是求得扇形半徑與圓半徑之間的關系.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB是圓錐的側面展開圖,若小正方形方格的邊長為1cm,則這個圓錐的底面半徑為(  )
A、2
2
cm
B、
2
cm
C、
2
2
cm
D、
1
2
cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,扇形OAB的半徑OA=r,圓心角∠AOB=90°,點C是
AB
上異于A、B的動點,過點C作CD⊥OA于點D,作CE⊥OB于點E,點M在DE上,DM=2EM,過點C的直線CP交OA的延長線于點P,且∠CPO=∠CDE.
(1)試說明:DM=
2
3
r;
(2)試說明:直線CP是扇形OAB所在圓的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•珠海三模)如圖:扇形OAB的圓心角∠AOB=120°,半徑OA=6cm,
(1)請你用尺規(guī)作圖的方法作出扇形的對稱軸(不寫作法,保留作圖痕跡)
(2)若將此扇形圍成一個圓錐的側面,求圓錐底面圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,扇形OAB的圓心角為90°,分別以OA,OB為直徑在扇形內作半圓,P和Q分別表示兩個陰影部分的面積,那么P和Q的大小關系是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,扇形OAB和扇形OA′B′的圓心角相同,設AA′=BB′=d.
AB
=l1
A′B′
=l2
求證:圖中陰影部分的面積S=
1
2
(l1+l2)d

查看答案和解析>>

同步練習冊答案