精英家教網 > 初中數學 > 題目詳情

【題目】在一次數學測試中,七(2)班的平均分為85分,把高于平均分的高出部分數記為正數,老師將某一小組的美美、多多、田田、樂樂四位同學的成績記為+7,-4,-11,+13,則這四位同學實際成績最高的是(
A.美美
B.多多
C.田田
D.樂樂

【答案】D
【解析】85分為標準,高于標準為正,低于標準為負,因此可知樂樂高于標準,并且高于標準13分,即成績最高的為樂樂,答案為D選項.
【考點精析】解答此題的關鍵在于理解正數與負數的相關知識,掌握大于0的數叫正數;小于0的數叫負數;0既不是正數也不是負數;正數負數表示具有相反意義的量.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在等腰△ABC中,直線l垂直底邊BC,現將直線l沿線段BC從B點勻速平移至C點,直線l與△ABC的邊相交于E、F兩點.設線段EF的長度為y,平移時間為t,則下圖中能較好反映y與t的函數關系的圖象是(

A. B. C. D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若兩個相似三角形的面積比為1:4,則這兩個相似三角形的周長比是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊三角形ABD和等邊三角形CBD的邊長均為a,現把它們拼合起來,E是AD上異于A、D兩點的一動點,F是CD上一動點,滿足AE+CF=a.則△BEF的形狀如何?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8cm,AD=12cm,BC=18cm,點P從點A出發(fā)以2cm/s的速度沿A→D→C運動,點P從點A出發(fā)的同時點Q從點C出發(fā),以1cm/s的速度向點B運動,當點P到達點C時,點Q也停止運動.設點P,Q運動的時間為t秒.

(1)從運動開始,當t取何值時,PQ∥CD?

(2)從運動開始,當t取何值時,△PQC為直角三角形?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1(注:與圖2完全相同),二次函數的圖象與x軸交于A(3,0),B(﹣1,0)兩點,與y軸交于點C.

(1)求該二次函數的解析式;

(2)設該拋物線的頂點為D,求ACD的面積(請在圖1中探索);

(3)若點P,Q同時從A點出發(fā),都以每秒1個單位長度的速度分別沿AB,AC邊運動,其中一點到達端點時,另一點也隨之停止運動,當P,Q運動到t秒時,APQ沿PQ所在的直線翻折,點A恰好落在拋物線上E點處,請直接判定此時四邊形APEQ的形狀,并求出E點坐標(請在圖2中探索).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】求證:不論k為何值時,關于x的一元二次方程x2+k2x+k4)=0有兩個不相等的實數根.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道,任意一個正整數n都可以進行這樣的分解:n=p×q(p,q是正整數,且p≤q),在n的所有這種分解中,如果p,q兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解.并規(guī)定:F(n)=.例如12可以分解成1×12,2×6或3×4,因為12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=

(1)如果一個正整數a是另外一個正整數b的平方,我們稱正整數a是完全平方數.求證:對任意一個完全平方數m,總有F(m)=1;

(2)如果一個兩位正整數t,t=10x+y(1≤x≤y≤9,x,y為自然數),交換其個位上的數與十位上的數得到的新數減去原來的兩位正整數所得的差為18,那么我們稱這個數t為“吉祥數”,求所有“吉祥數”中F(t)的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知任意三角形的三邊長,如何求三角形面積?

古希臘的幾何學家海倫解決了這個問題,在他的著作《度量論》一書中給出了計算公式﹣﹣海倫公式S=(其中a,b,c是三角形的三邊長,p=,S為三角形的面積),并給出了證明

例如:在△ABC中,a=3,b=4,c=5,那么它的面積可以這樣計算:

∵a=3,b=4,c=5,∴p==6,∴S===6

事實上,對于已知三角形的三邊長求三角形面積的問題,還可用我國南宋時期數學家秦九韶提出的秦九韶公式等方法解決.

如圖,在△ABC中,BC=5,AC=6,AB=9

(1)用海倫公式求△ABC的面積;

(2)求△ABC的內切圓半徑r.

查看答案和解析>>

同步練習冊答案