【題目】如圖,的平分線過點,以點為圓心的圓與相切于點,為的直徑.
(1)求證:是的切線;
(2)若,,求;
(3)若的半徑為,,求陰影部分的面積.
【答案】(1)證明見解析,(2)(3)
【解析】
(1)過點O作OH⊥PB,證明OH=OC即可;
(2)由圓周角定理求出∠COD=2∠E=50°,由切線求出∠COP的度數(shù),∠COD-∠COP即可得到答案;
(3)在Rt△CDE中,由三角函數(shù)先求出∠E的度數(shù)為30°,進而求出圓心角∠COE=120°,再由扇形面積公式算出扇形COE的面積,再加上等邊△CDO的面積及得到陰影部分的面積.
解:(1)證明:過點O作OH⊥PB于H點,如下圖所示:
∵AP為圓O的切線,且C為切點
∴CO⊥PC
∵PO為∠APB的角平分線,且CO⊥PC,OH⊥PB
∴OH=OC
故PB是圓O的切線.
(2)∵∠CPO=50°,且CP⊥CO
∴∠COP=90°-50°=40°
又由同弧所對的圓周角是圓心角的一半可知
∠COD=2∠E=2×25°=50°
∴∠POD=∠COD-∠COP=50°-40°=10°.
故答案為:10°.
(3)∵DE為圓O的直徑
∴在Rt△DEC中,
∴∠E=30°
∴∠COE=180°-30°-30°=120°
∴扇形COE的面積為:
∴△CDO的面積為:
故陰影部分的面積為:
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】英語老師對某班級全班同學進行口語測試,并按10分制評分,將評分結果制成了如圖兩幅統(tǒng)計圖(不完整).請根據(jù)圖表信息,解答下列問題:
(1)求該班級學生總人數(shù),并將條形統(tǒng)計圖補充完整;
(2)求該班學生口語測試所得分數(shù)的平均分;
(3)英語老師將隨機邀請該班一名同學進行口語對話,求事件“英語老師邀請得分為9分的同學進行口語對話”發(fā)生的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,當時,;當時,;
(1)根據(jù)給定的條件,則_________,____________.
(2)在給出的平面直角坐標系中,畫出函數(shù)圖像;
(3)①結合所畫的圖像,直接寫出方程的解,解為________________.(精確到十分位)
②若一次函數(shù)的圖像與的圖像有且只有三個交點,則的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,tan∠BACtan∠ABC=1,⊙O經(jīng)過A、B兩點,分別交AC、BC于D、E兩點,若DE=10,AB=24,則⊙O的半徑為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】學校某數(shù)學興趣小組想測學校旗桿高度如圖,明明在稻香園一樓點測得旗桿頂點仰角為,在稻香園二樓點測得點的仰角為.明明從點朝旗桿方向步行米到點,沿坡度的臺階走到點,再向前走米到旗桿底部,已知稻香園高度為米,則旗桿的高度約為( )(參考數(shù)據(jù):,,)
A.米B.米C.米D.米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC與△ABD中,∠DBA=∠CAB,AC與BD交于點F
(1)如圖1,若∠DAF=∠CBF,求證:AD=BC;
(2)如圖2,∠D=135°,∠C=45°,AD=2,AC=4,求BD的長.
(3)如圖3,若∠DBA=18°,∠D=108°,∠C=72°,AD=1,直接寫出DB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線經(jīng)過點A(-3,0),C(0,3),交x軸于另一點B,其頂點為D.
(1)求拋物線的解析式;
(2)點P為拋物線上一點,直線CP交x軸于點E,若△CAE與△OCD相似,求P點坐標;
(3)如果點F在y軸上,點M在直線AC上,那么在拋物線上是否存在點N,使得以C,F,M,N為頂點的四邊形是菱形?若存在,請求出菱形的周長;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,對角線AC,BD交于點O,以AD,OD為鄰邊作平行四邊形ADOE,連接BE.
(1)求證:四邊形AOBE是菱形;
(2)若∠EAO+∠DCO=180°,DC=3,求四邊形ADOE的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com