(2010•樂山)設a、b是常數(shù),且b>0,拋物線y=ax2+bx+a2-5a-6為下圖中四個圖象之一,則a的值為( )

A.6或-1
B.-6或1
C.6
D.-1
【答案】分析:由b>0,排除前兩個圖象,第三個圖象a>0,->0,推出b<0,與已知矛盾排除,從而拋物線y=ax2+bx+a2-5a-6的圖象是第四個圖,再求a的值.
解答:解:∵圖1和圖2表示y=0時,有1和-1兩個根,代入方程能得出b=-b,即b=0,不合題意,
∴排除前兩個圖象;
∵第三個圖象a>0,又->0,
∴b<0,與已知矛盾排除,
∴拋物線y=ax2+bx+a2-5a-6的圖象是第四個圖,
由圖象可知,拋物線經(jīng)過原點(0,0),
∴a2-5a-6=0,解得a=-1或6,
∵a<0,∴a=-1.
故選D.
點評:主要考查了從圖象上把握有用的條件,準確選擇數(shù)量關系解得a的值,簡單的圖象最少能反映出2個條件:開口方向,經(jīng)過原點,利用這兩個條件即可求出a的值.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(11)(解析版) 題型:解答題

(2010•樂山)在△ABC中,D為BC的中點,O為AD的中點,直線l過點O.過A、B、C三點分別做直線l的垂線,垂足分別是G、E、F,設AG=h1,BE=h2,CF=h3
(1)如圖所示,當直線l⊥AD時(此時點G與點O重合).求證:h2+h3=2h1
(2)將直線l繞點O旋轉(zhuǎn),使得l與AD不垂直.
①如圖所示,當點B、C在直線l的同側(cè)時,猜想(1)中的結(jié)論是否成立,請說明你的理由;
②如圖所示,當點B、C在直線l的異側(cè)時,猜想h1、h2、h3滿足什么關系.(只需寫出關系,不要求說明理由)


查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《四邊形》(07)(解析版) 題型:解答題

(2010•樂山)從甲、乙兩題中選做一題.如果兩題都做,只以甲題計分.
題甲:若關于x一元二次方程x2-2(2-k)x+k2+12=0有實數(shù)根a,β.
(1)求實數(shù)k的取值范圍;
(2)設,求t的最小值.
題乙:如圖所示,在矩形ABCD中,P是BC邊上一點,連接DP并延長,交AB的延長線于點Q.
(1)若=,求的值;
(2)若點P為BC邊上的任意一點,求證:-=.
我選做的是______題.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(01)(解析版) 題型:選擇題

(2010•樂山)設a、b是常數(shù),且b>0,拋物線y=ax2+bx+a2-5a-6為下圖中四個圖象之一,則a的值為( )

A.6或-1
B.-6或1
C.6
D.-1

查看答案和解析>>

科目:初中數(shù)學 來源:2010年四川省樂山市中考數(shù)學試卷(解析版) 題型:填空題

(2010•樂山)勾股定理揭示了直角三角形三邊之間的關系,其中蘊含著豐富的科學知識和人文價值.如圖所示,是一棵由正方形和含30°角的直角三角形按一定規(guī)律長成的勾股樹,樹主干自下而上第一個正方形和第一個直角三角形的面積之和為S1,第二個正方形和第二個直角三角形的面積之和為S2,…,第n個正方形和第n個直角三角形的面積之和為Sn.設第一個正方形的邊長為1.
請解答下列問題:
(1)S1=    ;
(2)通過探究,用含n的代數(shù)式表示Sn,則Sn=   

查看答案和解析>>

同步練習冊答案