【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=60°,AC=2,D是AB邊上一個動點(不與點A、B重合),E是BC邊上一點,且∠CDE=30°.設(shè)AD=x,BE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A.B.C.D.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知拋物線y=ax2(a≠0)與一次函數(shù)y=kx+b的圖象相交于A(﹣1,﹣1),B(2,﹣4)兩點,點P是拋物線上不與A,B重合的一個動點,點Q是y軸上的一個動點.
(1)請直接寫出a,k,b的值及關(guān)于x的不等式ax2<kx﹣2的解集;
(2)當點P在直線AB上方時,請求出△PAB面積的最大值并求出此時點P的坐標;
(3)是否存在以P,Q,A,B為頂點的四邊形是平行四邊形?若存在,請直接寫出P,Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,EF是一面長18米的墻,用總長為32米的木柵欄(圖中的虛線)圍一個矩形場地ABCD,中間用柵欄隔成同樣三塊.若要圍成的矩形面積為60平方米,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD,點O是邊BC的中點,連接DO并延長,交AB的延長線于點E,連接BD、EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠BOD=100°,則當∠A= 時,四邊形BECD是矩形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學(xué)舉行“漢字聽寫”比賽,賽后整理參賽學(xué)生的成績,將學(xué)生的成績分為A,B,C,D四個等級,并將結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.
請你根據(jù)統(tǒng)計圖解答下列問題:
(1)參加比賽的學(xué)生共有____名;
(2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;
(3)組委會決定從本次比賽獲得A等級的學(xué)生中,選出2名去參加全市中學(xué)生“漢字聽寫”大賽.已知A等級學(xué)生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學(xué)生恰好是一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,過點O作OD⊥CB,垂足為點D,延長DO交⊙O于點E,過點E作PE⊥AB,垂足為點P,作射線DP交CA的延長線于F點,連接EF,
(1)求證:OD=OP;(2)求證:FE是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在⊙O中,AB是直徑,AD是弦,∠ADE = 60°,∠C = 30°.
⑴判斷直線CD是否是⊙O的切線,并說明理由;
⑵若CD = ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果關(guān)于x的一元二次方程ax2+bx+c=0有2個實數(shù)根,且其中一個實數(shù)根是另一個實數(shù)根的3倍,則稱該方程為“立根方程”.
(1)方程x2﹣4x+3=0 立根方程,方程x2﹣2x﹣3=0 立根方程;(請?zhí)?/span>“是”或“不是”)
(2)請證明:當點(m,n)在反比例函數(shù)y上時,關(guān)于x的一元二次方程mx2+4x+n=0是立根方程;
(3)若方程ax2+bx+c=0是立根方程,且兩點P(3,2)、Q(6,2)均在二次函數(shù)y=ax2+bx+c上,求方程ax2+bx+c=0的兩個根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與x軸交于點A,B兩點(點A在點B左邊),與y軸交于點C.
(1)求A,B兩點的坐標.
(2)點P是線段BC下方的拋物線上的動點,連結(jié)PC,PB.
①是否存在一點P,使△PBC的面積最大,若存在,請求出△PBC的最大面積;若不存在,試說明理由.
②連結(jié)AC,AP,AP交BC于點F,當∠CAP=∠ABC時,求直線AP的函數(shù)表達式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com