【題目】如圖,在△ABC中,分別以AC,BC為邊作等邊△ACD和等邊△BCE.設(shè)△ACD、△BCE、△ABC的面積分別是S1、S2、S3 , 現(xiàn)有如下結(jié)論:
①S1:S2=AC2:BC2;
②連接AE,BD,則△BCD≌△ECA;
③若AC⊥BC,則S1S2= S32 .
其中結(jié)論正確的序號是 .
【答案】①②③
【解析】①S1:S2=AC2:BC2正確,
解:∵△ADC與△BCE是等邊三角形,
∴△ADC∽△BCE,
∴S1:S2=AC2:BC2 .
②△BCD≌△ECA正確,
證明:∵△ADC與△BCE是等邊三角形,
∴∠ACD=∠BCE=60°
∴∠ACD+∠ACB=∠BCE+∠ACD,
即∠ACE=∠DCB,
在△ACE與△DCB中,
,
∴△BCD≌△ECA(SAS).
③若AC⊥BC,則S1S2= S32正確,
解:設(shè)等邊三角形ADC的邊長=a,等邊三角形BCE邊長=b,則△ADC的高= a,△BCE的高= b,
∴S1= a a= a2 , S2= b b= b2 ,
∴S1S2= a2 b2= a2b2 ,
∵S3= ab,
∴S32= a2b2 ,
∴S1S2= S32 .
【考點精析】關(guān)于本題考查的等邊三角形的性質(zhì),需要了解等邊三角形的三個角都相等并且每個角都是60°才能得出正確答案.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知代數(shù)式A=x2+3xy+x-,B=2x2-xy+4y-1
(1)當(dāng)x=y=-2時,求2A-B的值;
(2)若2A-B的值與y的取值無關(guān),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(概念學(xué)習(xí))
規(guī)定:求若干個相同的有理數(shù)(均不等于0)的除法運算叫做除方,如2÷2÷2等.類比有理數(shù)的乘方,我們把2÷2÷2記作2③,讀作“2的圈3次方”,一般地,把(a≠0)記作a,讀作“a的圈n次方”.
(初步探究)
(1)直接寫出計算結(jié)果:2③=_____,(﹣)⑤=_____.
(2)關(guān)于除方,下列說法準(zhǔn)確的選項有_________(只需填入正確的序號)
①.任何非零數(shù)的圈2次方都等于1; ②.對于任何正整數(shù)n,1=1;
③.3④=4③ ④.負(fù)數(shù)的圈奇數(shù)次方結(jié)果是負(fù)數(shù),負(fù)數(shù)的圈偶數(shù)次方結(jié)果是正數(shù).
(深入思考)我們知道,有理數(shù)的減法運算可以轉(zhuǎn)化為加法運算,除法運算可以轉(zhuǎn)化為乘法運算,有理數(shù)的除方運算如何轉(zhuǎn)化為乘方運算呢?
例如: 2④=2÷2÷2÷2
=2×××
=(__)2 (冪的形式)
試一試:將下列除方運算直接寫成冪的形式.
5⑥=_____;(﹣)⑩=_____;a=_____(a≠0).
算一算:④÷23+(﹣8)×2③.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PB、AB,∠PBA=∠C.
(1)求證:PB是⊙O的切線;
(2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為2 ,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知函數(shù)y=2x和函數(shù)y=的圖象交于A、B兩點,過點A作AE⊥x軸于點E,若△AOE的面積為4,P是坐標(biāo)平面上的點,且以點B、O、E、P為頂點的四邊形是平行四邊形,則k= ,滿足條件的P點坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,AB邊上有一動點P,連接PD,線段PD繞點P順時針旋轉(zhuǎn)90°后,得到線段PE,且PE交BC于F,連接DF,過點E作EQ⊥AB的延長線于點Q.
(1)求線段PQ的長;
(2)問:點P在何處時,△PFD∽△BFP,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,函數(shù)y= 的圖象過點A(1,2).
(1)求該函數(shù)的解析式;
(2)過點A分別向x軸和y軸作垂線,垂足為B和C,求四邊形ABOC的面積;
(3)求證:過此函數(shù)圖象上任意一點分別向x軸和y軸作垂線,這兩條垂線與兩坐標(biāo)軸所圍成矩形的面積為定值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象在第一象限交于點A(4,2),與y軸的負(fù)半軸交于點B,且OB=6.
(1)求函數(shù)y=和y=kx+b的解析式;
(2)已知直線AB與x軸相交于點C,在第一象限內(nèi),求反比例函數(shù)y=的圖象上一點P,使得S△POC=9.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com