【題目】在半徑為5cm的圓中,弦AB∥CD,AB=6cm,CD=8cm,求弦AB與CD之間的距離.
【答案】(1)1(2)7
【解析】
作OE⊥AB于E,交CD于F,連結OA、OC,如圖,根據(jù)平行線的性質得OF⊥CD,則利用垂徑定理得到AE=BE=AB=3,CF=DF=CD=4,接著根據(jù)勾股定理,在Rt△AOE中計算出OE=4,在Rt△COF中計算出OF=3,然后分類討論:當點O在AB與CD之間時,EF=OE+OF;當點O不在AB與CD之間時,AB和CD的距離EF=OE-OF.
過O作OE⊥AB,交CD于F,連接OA,OC,則AE=AB=3cm,
∵AB∥CD,OE⊥AB,
∴OF⊥CD,
∴CF=CD=4cm,
在Rt△OAE中,OE==4cm;在Rt△OCF中,OF==3cm,
(1)當AB、CD在圓心O的同側,EF=OE-OF=4-3=1cm.
(2)當AB、CD在圓心O的異側,EF=OE+OF=4+3=7cm.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知長方形紙片ABCD中,AB=10,AD=8,點E在AD邊上,將△ABE沿BE折疊后,點A正好落在CD邊上的點F處.
(1)求DF的長;
(2)求△BEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=BC,∠ABC=120°,點E是AC上一點,連接BE,且∠BEC=50°,D為點B關于直線AC的對稱點,連接CD,將線段EB繞點E順時針旋轉40°得到線段EF,連接DF.
(1)請你在下圖中補全圖形;
(2)請寫出∠EFD的大小,并說明理由;
(3)連接CF,求證:DF=CF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校教學樓AB后方有一斜坡,已知斜坡CD的長為12米,坡角α為60°,根據(jù)有關部門的規(guī)定,∠α≤39°時,才能避免滑坡危險,學校為了消除安全隱患,決定對斜坡CD進行改造,在保持坡腳C不動的情況下,學校至少要把坡頂D向后水平移動多少米才能保證教學樓的安全?(結果取整數(shù))
(參考數(shù)據(jù):sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法:其中正確的有_____.(填寫序號)
①若x>y,則a2x>a2y;
②若(a﹣1)x>a﹣1,則x>1;
③有一個角是60°的三角形是等邊三角形;
④旋轉不改變圖形的形狀和大小
⑤以7、24、25為三邊長的三角形是直角三角形;
⑥真命題的逆命題也是真命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司為了了解員工每人所創(chuàng)年利潤情況,公司從各部抽取部分員工對每年所創(chuàng)年利潤情況進行統(tǒng)計,并繪制如圖1,圖2統(tǒng)計圖.
(1)求抽取員工總人數(shù),并將圖補充完整;
(2)每人所創(chuàng)年利潤的眾數(shù)是 ,每人所創(chuàng)年利潤的中位數(shù)是 ,平均數(shù)是 ;
(3)若每人創(chuàng)造年利潤10萬元及(含10萬元)以上為優(yōu)秀員工,在公司1200員工中有多少可以評為優(yōu)秀員工?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC和△ADE都是等腰直角三角形,∠C和∠ADE都是直角,點C在AE上,△ABC繞著A點經過逆時針旋轉后能夠與△ADE重合得到圖1,再將圖1作為“基本圖形”繞著A點經過逆時針連續(xù)旋轉得到圖2.兩次旋轉的角度分別為( )
A. 45°,90° B. 90°,45° C. 60°,30° D. 30°,60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC(其中∠B=35°,∠C=90°)繞點A按順時針方向旋轉到△AB1C1的位置,使得點C、A、B1在同一條直線上,那么旋轉角的度數(shù)是______.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com