如圖,已知直線y=﹣x+3與x軸、y軸分別交于點(diǎn)A、B,線段AB為直角邊在第一象限內(nèi)作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;

(2)求點(diǎn)C坐標(biāo);

(3)點(diǎn)P是x軸上的一個動點(diǎn),設(shè)P(x,0)

①請用x的代數(shù)式表示PB2、PC2;

②是否存在這樣的點(diǎn)P,使得|PC-PB|的值最大?如果不存在,請說明理由;

如果存在,請求出點(diǎn)P的坐標(biāo).

 


∴SAOB=×4×3=6;

 
(1)由直線y=-x +3,令y=0,得OA=x=4,令x=0,得OB=y=3,

(2)過C點(diǎn)作CD⊥x軸,垂足為D,

∵∠BAO+∠CAD=90°,∠ACD+∠CAD=90°,

∴∠BAO=∠ACD,

又∵AB=AC,∠AOB=∠CDA=90°,

∴△OAB≌△DCA,

∴CD=OA=4,AD=OB=3,則OD=4+3=7,

∴C(7,4);

(3)①由(2)可知,PD=7-x,

在Rt△OPB中,PB2=OP2+OB2=x2+9,

Rt△PCD中,PC2=PD2+CD2=(7-x)2+16=x2-14x+65,

②存在這樣的P點(diǎn).

設(shè)B點(diǎn)關(guān)于 x軸對稱的點(diǎn)為B′,則B′(0,-3),

連接CB′,設(shè)直線B′C解析式為y=kx+b,將B′、C兩點(diǎn)坐標(biāo)代入,得

       b=-3;

  7k+b=4;

             k=1

解得    b=-3

所以,直線B′C解析式為y=x-3,

令y=0,得P(3,0),此時|PC-PB|的值最大,

故答案為:(3,0).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等
;
(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是( 。

查看答案和解析>>

同步練習(xí)冊答案