【題目】如圖,矩形OABC的兩邊在坐標軸上,點A的坐標為(10,0),拋物線y=ax2+bx+4過點B,C兩點,且與x軸的一個交點為D(﹣2,0),點P是線段CB上的動點,設CP=t(0<t<10).
(1)請直接寫出B、C兩點的坐標及拋物線的解析式;
(2)過點P作PE⊥BC,交拋物線于點E,連接BE,當t為何值時,∠PBE和Rt△OCD中的一個角相等?
(3)點Q是x軸上的動點,過點P作PM∥BQ,交CQ于點M,作PN∥CQ,交BQ于點N,當四邊形PMQN為正方形時,求t的值.
【答案】(1);(2)t=3;(3)或
【解析】試題分析:(1)由拋物線的解析式可求得C點坐標,由矩形的性質可求得B點坐標,由B、D的坐標,利用待定系數(shù)法可求得拋物線解析式;
(2)可設P(t,4),則可表示出E點坐標,從而可表示出PB、PE的長,由條件可證得△PBE∽△OCD,利用相似三角形的性質可得到關于t的方程,可求得t的值;
(3)當四邊形PMQN為正方形時,則可證得△COQ∽△QAB,利用相似三角形的性質可求得CQ的長,在Rt△BCQ中可求得BQ、CQ,則可用t分別表示出PM和PN,可得到關于t的方程,可求得t的值.
試題解析:
解:(1)在y=ax2+bx+4中,令x=0可得y=4,
∴C(0,4),
∵四邊形OABC為矩形,且A(10,0),
∴B(10,4),
把B、D坐標代入拋物線解析式可得,
解得,
∴拋物線解析式為y=x2+x+4;
(2)由題意可設P(t,4),則E(t, t2+t+4),
∴PB=10﹣t,PE=t2+t+4﹣4=t2+t,
∵∠BPE=∠COD=90°,
當∠PBE=∠OCD時,
則△PBE∽△OCD,
∴,即BPOD=COPE,
∴2(10﹣t)=4(t2+t),解得t=3或t=10
∴當t=3時,∠PBE=∠OCD;
當∠PBE=∠CDO時,
則△PBE∽△ODC,
∴,即BPOC=DOPE,
∴4(10﹣t)=2(t2+t),解得t=12或t=10(均不合題意,舍去)
綜上所述∴當t=3時,∠PBE=∠OCD;
(3)當四邊形PMQN為正方形時,則∠PMC=∠PNB=∠CQB=90°,PM=PN,
∴∠CQO+∠AQB=90°,
∵∠CQO+∠OCQ=90°,
∴∠OCQ=∠AQB,
∴Rt△COQ∽Rt△QAB,
∴,即OQAQ=COAB,
設OQ=m,則AQ=10﹣m,
∴m(10﹣m)=4×4,解得m=2或m=8,
①當m=2時,CQ==,BQ==,
∴sin∠BCQ==,sin∠CBQ==,
∴PM=PCsin∠PCQ=t,PN=PBsin∠CBQ=(10﹣t),
∴t =(10﹣t),解得t=,
②當m=8時,同理可求得t=,
∴當四邊形PMQN為正方形時,t的值為或.
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(﹣2,1),B(﹣1,4),C(﹣3,2).
(1)畫出△ABC關于y軸對稱的圖形△A1B1C1,并直接寫出C1點坐標;
(2)以原點O為位似中心,位似比為1:2,在y軸的左側,畫出△ABC放大后的圖形△A2B2C2,并直接寫出C2點坐標;
(3)如果點D(a,b)在線段AB上,請直接寫出經(jīng)過(2)的變化后D的對應點D2的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1在正方形ABCD的外側作兩個等邊三角形ADE和DCF,連接AF,BE.
(圖1) (圖2) (備用圖)
(1)請判斷:AF與BE的數(shù)量關系是_____________,位置關系______________;
(2)如圖2,若將條件“兩個等邊三角形ADE和DCF”變?yōu)椤皟蓚等腰三角形ADE和DCF,且EA=ED=FD=FC”,第(1)問中的結論是否仍然成立?請作出判斷并給予證明;
(3)若三角形ADE和DCF為一般三角形,且AE=DF,ED=FC,第(1)問中的結論都能成立嗎?請直接寫出你的判斷.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在邊長為a米的正方形草坪上修建兩條寬為b米的道路.
(1)為了求得剩余草坪的面積,小明同學想出了兩種辦法,結果分別如下:
方法①: 方法②:
請你從小明的兩種求面積的方法中,直接寫出含有字母a,b代數(shù)式的等式是:
(2)根據(jù)(1)中的等式,解決如下問題:
①已知:,求的值;
②己知:,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將矩形ABCD繞點A順時針旋轉到矩形AB'C'D'的位置,旋轉角為α(0°<α<90°).若∠1=115°,則∠α=____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】每年農(nóng)歷五月初五,是中國民間的傳統(tǒng)節(jié)日——端午節(jié).它始于我國的春秋戰(zhàn)國時期,已列為世界非物質文化遺產(chǎn).時至今日,端午節(jié)在我國仍是一個十分盛行的節(jié)日.今年端午節(jié),某地甲、乙兩家超市為吸引更多的顧客,開展促銷活動,對某種質量和售價相同的粽子分別推出了不同的優(yōu)惠方案.甲超市的方案是:購買該種粽子超過80元后,超出80元的部分按九折收費;乙超市的方案是:購買該種粽子超過120元后,超出120元的部分按八折收費.請根據(jù)顧客購買粽子的金額,選擇到哪家超市購買粽子劃算?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,延長矩形ABCD的邊BC至點E,使CE=BD,連結AE,如果∠ABD=m°,則∠E=_____度(用含m的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的正方形網(wǎng)格中,每個小正方形的邊長都是1個單位長度,的頂點均在格點上.(畫圖要求:先用鉛筆畫圖,然后用黑色水筆描畫)
(1)①畫出繞點按逆時針方向旋轉后的;
②連結,請判斷是怎樣的三角形,并簡要說明理由.
(2)畫出,使和關于點成中心對稱;
(3)請指出如何平移,使得和能拼成一個長方形.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com