【題目】一個裝有進水管和出水管的容器,從某時刻開始的4分鐘內(nèi)只進水不出水,在隨后的8分鐘內(nèi)既進水又出水,接著關閉進水管直到容器內(nèi)的水放完.假設每分鐘的進水量和出水量是兩個常數(shù),容器內(nèi)的水量y(單位:升)與時間x(單位:分)之間的部分關系如圖所示.那么,從關閉進水管起________分鐘該容器內(nèi)的水恰好放完.

【答案】8

【解析】試題分析:由0-4分鐘的函數(shù)圖象可知進水管的速度,設出水管每分鐘的出水量為m升,由函數(shù)圖象,列出方程求得m的值,再用30除以m的值即可的答案.

試題解析:

由函數(shù)圖象,得:

進水管每分鐘的進水量為: (升).

設出水管每分鐘的出水量為升,由函數(shù)圖象,得

解得:

(分鐘).

即從關閉進水管起需要8分鐘該容器內(nèi)的水恰好放完.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,P為AB中點,BEDP交DP延長線于E,連結(jié)AE,AFAE交DP于F,連結(jié)BF,CF.下列結(jié)論:EF=AF;AB=FB;CFBE;EF=CF.其中正確的結(jié)論有( )個.

A.1 B.2 C.3 D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,二次函數(shù)y=ax2+bx+c(a>0)的圖象的頂點為D,與y軸交于點C,與x軸交于A、B兩點,點A在原點的左側(cè),點B的坐標為(3,0),OB=OC=3OA.

(1)求這個二次函數(shù)的解析式;
(2)如圖,若點G(2,m)是該拋物線上一點,E是直線AG下方拋物線上的一動點,當點E運動到什么位置時,△AEG的面積最大?求此時點E的坐標和△AEG的最大面積;
(3)若平行于x軸的直線與該拋物線交于M、N兩點,且以MN為直徑的圓與x軸相切,求該圓的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線yx與雙曲線y (k>0)交于A,B兩點,且點A的橫坐標為4.C是雙曲線上一點,且縱坐標為8,則AOC的面積為(  )

A. 8 B. 32 C. 10 D. 15

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在﹣3,﹣1,0,1這四個數(shù)中,最小的數(shù)是(  )

A. 3B. 1C. 0D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法中.正確的是 ( )

A. 0是最小的有理教 B. 0是最小的整數(shù)

C. 0的倒數(shù)和相反數(shù)都是0 D. 0是最小的非負數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為射線AB上一點,AB=30,AC比BC的 多5,P,Q兩點分別從A,B兩點同時出發(fā).分別以2單位/秒和1單位/秒的速度在射線AB上沿AB方向運動,運動時間為t秒,M為BP的中點,N為QM的中點,以下結(jié)論: ①BC=2AC;②AB=4NQ;③當PB= BQ時,t=12,其中正確結(jié)論的個數(shù)是(

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B分別在x軸正半軸與y軸正半軸上,線段OA,OBOAOB)的長是方程xx﹣4+84﹣x=0的兩個根,作線段AB的垂直平分線交y軸于點D,交AB于點C

1)求線段AB的長;

2)求tan∠DAO的值;

3)若把△ADC繞點A順時針旋轉(zhuǎn)α°0α90),點D,C的對應點分別為D1,C1,得到△AD1C1,當AC1∥y軸時,分別求出點C1,點D1的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知直線yx與雙曲線y (k>0)交于A,B兩點,且點A的橫坐標為4.C是雙曲線上一點,且縱坐標為8,則AOC的面積為(  )

A. 8 B. 32 C. 10 D. 15

查看答案和解析>>

同步練習冊答案