【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),AE和過(guò)點(diǎn)C的切線互相垂直,垂足為E,AE交⊙O于點(diǎn)D,直線EC交AB的延長(zhǎng)線于點(diǎn)P,連接AC,BC,PB:PC=1:2.
(1)求證:AC平分∠BAD;
(2)探究線段PB,AB之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)若AD=3,求△ABC的面積.
【答案】(1)證明見(jiàn)試題解析;(2)AB=3PB,理由見(jiàn)試題解析;(3)5.
【解析】
試題分析:(1)首先連接OC,由PE是⊙O的切線,AE和過(guò)點(diǎn)C的切線互相垂直,可證得OC∥AE,又由OA=OC,易證得∠DAC=∠OAC,即可得AC平分∠BAD;
(2)由AB是⊙O的直徑,PE是切線,可證得∠PCB=∠PAC,即可證得△PCB∽△PAC,然后由相似三角形的對(duì)應(yīng)邊成比例與PB:PC=1:2,即可求得答案;
(3)首先過(guò)點(diǎn)O作OH⊥AD于點(diǎn)H,則AH=AD=,四邊形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的對(duì)應(yīng)邊成比例,求得OC的長(zhǎng),再由△PBC∽△PCA,證得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2,可得(2BC)2+BC2=52,即可求得BC的長(zhǎng),繼而求得答案.
試題解析:(1)連接OC,∵PE是⊙O的切線,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;
(2)線段PB,AB之間的數(shù)量關(guān)系為:AB=3PB.理由:
∵AB是⊙O的直徑,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OB=OC,∴∠OCB=∠ABC,∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC,∵∠P是公共角,∴△PCB∽△PAC,∴,∴=PBPA,∵PB:PC=1:2,∴PC=2PB,∴PA=4PB,∴AB=3PB;
(3)過(guò)點(diǎn)O作OH⊥AD于點(diǎn)H,則AH=AD=,四邊形OCEH是矩形,∴OC=HE,∴AE=+OC,∵OC∥AE,∴△PCO∽△PEA,∴,∵AB=3PB,AB=2OB,∴OB=PB,∴==,∴OC=,∴AB=5,∵△PBC∽△PCA,∴,∴AC=2BC,在Rt△ABC中,,∴,∴BC=,∴AC=,∴S△ABC=ACBC=5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形 是正方形, 是 垂直平分線上的點(diǎn),點(diǎn) 關(guān)于 的對(duì)稱點(diǎn)是 ,直線 與直線 交于點(diǎn) .
(1)若點(diǎn) 是 邊的中點(diǎn),連接 ,則 =;
(2)小明從老師那里了解到,只要點(diǎn) 不在正方形的中心,則直線 與 所夾銳角不變.他嘗試改變點(diǎn) 的位置,計(jì)算相應(yīng)角度,驗(yàn)證老師的說(shuō)法.
如圖,將點(diǎn) 選在正方形內(nèi),且△ 為等邊三角形,求出直線 與 所夾銳角的度數(shù);
(3)請(qǐng)你繼續(xù)研究這個(gè)問(wèn)題,可以延續(xù)小明的想法,也可用其它方法.
我選擇小明的想法;并簡(jiǎn)述求直線 與 所夾銳角度數(shù)的思路.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)a、b、c為平面上三條不同直線,
(1)若a∥b,b∥c,則a與c的位置關(guān)系是________;
(2)若a⊥b,b⊥c,則a與c的位置關(guān)系是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,C是線段AB的中點(diǎn),CD平分∠ACE,CE平分∠BCD,CD=CE;
(1)求證:△ACD≌△BCE;
(2)若∠D=50°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列三行數(shù):
﹣2,4,﹣8,16,﹣32,64,…
﹣1,3,﹣7,17,﹣31,65,…
﹣,1,﹣2,4,﹣8,16…
(1)第①行數(shù)按什么規(guī)律排列?
(2)第②、③與第①行數(shù)分別有什么關(guān)系?
(3)取每行的第10個(gè)數(shù),計(jì)算這三個(gè)數(shù)的和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我校初一某班學(xué)生的平均體重是45公斤.
(1)下表給出了該班6位同學(xué)的體重情況(單位:公斤),完成下表
姓 名 | 小麗 | 小華 | 小明 | 小方 | 小穎 | 小寶 |
體 重 | 37 | 50 | 40 |
| 36 | 48 |
體重與平均體重的差值 | ﹣8 | +5 |
| +2 |
|
|
(2)最重的與最輕的同學(xué)的體重相差多少?
(3)這6位同學(xué)的平均體重是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,下列結(jié)論中不正確的是( )
A.當(dāng)AB=BC時(shí),它是菱形
B.當(dāng)AC⊥BD時(shí),它是菱形
C.當(dāng)∠ABC=90°時(shí),它是矩形
D.當(dāng)AC=BD時(shí),它是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將連續(xù)的偶數(shù)2,4,6,8…排列成如下的數(shù)表用十字框框出5個(gè)數(shù)(如圖)
(1)十字框框出5個(gè)數(shù)的和與框子正中間的數(shù)20有什么關(guān)系?
(2)若將十字框上下左右平移,但一定要框住數(shù)列中的5個(gè)數(shù),若設(shè)中間的數(shù)為a,用a的代數(shù)式表示十字框框住的5個(gè)數(shù)字之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】采摘茶葉是茶農(nóng)一項(xiàng)很繁重的勞動(dòng),利用單人便攜式采茶機(jī)能大大提高生產(chǎn)效率.實(shí)踐證明,一臺(tái)采茶機(jī)每天可采茶60公斤,是人手工采摘的5倍,購(gòu)買一臺(tái)采茶機(jī)需2400元.茶園雇人采摘茶葉,按每采摘1公斤茶葉m元的標(biāo)準(zhǔn)支付雇工工資,一個(gè)雇工手工采摘茶葉20天獲得的全部工錢正好購(gòu)買一臺(tái)采茶機(jī).
(1)求m的值;
(2)有兩家茶葉種植戶王家和顧家均雇人采摘茶葉,王家雇用的人數(shù)是顧家的2倍.王家所雇的人中有的人自帶采茶機(jī)采摘, 的人手工采摘,顧家所雇的人全部自帶采茶機(jī)采摘.某一天,王家付給雇工的工資總額比顧家付給雇工的工資總額少600元.問(wèn)顧家當(dāng)天采摘了多少公斤茶葉?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com