【題目】小明、小麗兩位同學(xué)八年級10次數(shù)學(xué)單元自我檢測的成績(成績均為整數(shù),且個位數(shù)為0)分別如下圖所示:

1)根據(jù)上圖中提供的數(shù)據(jù)填寫下表:

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

小明

80

80

小麗

85

260

2)如果將90分以上(含90分)的成績視為優(yōu)秀,則優(yōu)秀率高的同學(xué)是________;

3)根據(jù)圖表信息,請你對這兩位同學(xué)各提一條不超過20個字的學(xué)習(xí)建議.

【答案】1)圖表見解析;(2)小麗;(3)小麗同學(xué)要提高一下穩(wěn)定性,小明同學(xué)應(yīng)提高一下最好成績(答案不唯一).

【解析】

1)由平均數(shù)、方差的公式計算平均成績即可;將甲的成績按大小順序排列,中間兩個數(shù)的平均數(shù),即為中位數(shù);一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的一個數(shù)即為眾數(shù);

2)比較哪位同學(xué)的成績在90分以上(含90分)的成績多,即優(yōu)秀率高;

3)比較這兩位同學(xué)的方差,方差越小,成績越穩(wěn)定.

解:(1)小明10次成績分別為:80,7090,80,70,90,7080,9080;

按大小順序排列為:7070,70,80,80,8080,90,9090;

中位數(shù)是:80,

方差為:=60

小麗10次成績分別為:80,60,100,70,905070,9070,90

平均成績?yōu)椋海?/span>80+60+100+70+90+50+70+90+70+90÷10=80,

眾數(shù)是:90

故答案為:

平均成績(分)

中位數(shù)(分)

眾數(shù)(分)

方差(S2

小明

80

80

80

60

小麗

80

85

90

260

2)小明的優(yōu)秀率為:×100%=30%,

小麗的優(yōu)秀率為:×100%=40%,

小麗的優(yōu)秀率高.

故答案為:小麗;

3)根據(jù)方差S小明2S小麗2,所以小麗同學(xué)要提高一下穩(wěn)定性,根據(jù)最大值,小明同學(xué)應(yīng)提高一下最好成績(答案不唯一).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ACB45°.點D(與點B、C不重合)為射線BC上一動點,連接AD,以AD為一邊且在AD的右側(cè)作正方形ADEF

1)如果ABAC.如圖①,且點D在線段BC上運動.試判斷線段CFBD之間的位置關(guān)系,并證明你的結(jié)論.

2)如果AB≠AC,如圖②,且點D在線段BC上運動.(1)中結(jié)論是否成立,為什么?

3)若正方形ADEF的邊DE所在直線與線段CF所在直線相交于點P,設(shè)AC4,BC3CDx,求線段CP的長.(用含x的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是邊長為2的等邊三角形.取BC邊中點E,作ED∥AB,EF∥AC,得到四邊形EDAF,它的面積記作;取中點,作,,得到四邊形,它的面積記作.照此規(guī)律作下去,則=____________________ .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了支持大學(xué)生創(chuàng)業(yè),某市政府出臺了一項優(yōu)惠政策:提供10萬元的無息創(chuàng)業(yè)貸款.小王利用這筆貸款,注冊了一家淘寶網(wǎng)店,招收5名員工,銷售一種火爆的電子產(chǎn)品,并約定用該網(wǎng)店經(jīng)營的利潤,逐月償還這筆無息貸款.已知該產(chǎn)品的成本為每件4元,員工每人每月的工資為4千元,該網(wǎng)店還需每月支付其它費用1萬元.該產(chǎn)品每月銷售量y(萬件)與銷售單價x(元)萬件之間的函數(shù)關(guān)系如圖所示.

(1)求該網(wǎng)店每月利潤w(萬元)與銷售單價x(元)之間的函數(shù)表達式;

(2)小王自網(wǎng)店開業(yè)起,最快在第幾個月可還清10萬元的無息貸款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一蓄水池每小時的排水量Vm3/h)與排完水池中的水所用的時間th)之間成反比例函數(shù)關(guān)系,其圖象如圖所示.

1)求Vt之間的函數(shù)表達式;

2)若要2h排完水池中的水,那么每小時的排水量應(yīng)該是多少?

3)如果每小時排水量不超過4000m3,那么水池中的水至少要多少小時才能排完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,弦CDAB于點EAM是△ACD外角∠DAF的平分線.

(1)求證:AM是⊙O的切線.

(2)C是優(yōu)弧ABD的中點,AD4,射線COAM交于N點,求ON的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在每個小正方形的邊長為1的網(wǎng)格圖形中,每個小正方形的頂點稱為格點.以頂點都是格點的正方形ABCD的邊為斜邊,向內(nèi)作四個全等的直角三角形,使四個直角頂點E,F(xiàn),G,H都是格點,且四邊形EFGH為正方形,我們把這樣的圖形稱為格點弦圖.例如,在如圖1所示的格點弦圖中,正方形ABCD的邊長為,此時正方形EFGH的而積為5.問:當格點弦圖中的正方形ABCD的邊長為時,正方形EFGH的面積的所有可能值是_____(不包括5).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在ABC中,AB=ACADBC于點D,分別過點A和點CBCAD邊的平行線交于點E

1)求證:四邊形ADCE是矩形;

2)連結(jié)BE,若AD=,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某網(wǎng)店銷售一種兒童玩具,進價為每件30元,物價部門規(guī)定每件兒童玩具的銷售利潤不高于進價的.在銷售過程中發(fā)現(xiàn),這種兒童玩具每天的銷售量(件與銷售單價(元滿足一次函數(shù)關(guān)系.當銷售單價為35元時,每天的銷售量為350件;當銷售單價為40元時,每天的銷售量為300件.

1)求之間的函數(shù)關(guān)系式.

2)當銷售單價為多少時,該網(wǎng)店銷售這種兒童玩具每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

同步練習(xí)冊答案