【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙0的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.

(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC= ,求⊙O的半徑.

【答案】
(1)

證明:連接OD,

∵BC是⊙O的切線,

∴OD⊥BC,又∠C=90°,

∴OD∥AC,

∴∠ODA=∠CAD,

∵OA=OD,

∴∠ODA=∠OAD,

∴∠OAD=∠CAD,即AD平分∠BAC


(2)

解:連接CE,

∵AE是⊙O的直徑,

∴∠ADE=90°,

∵∠OAD=∠CAD,tan∠DAC= ,

∴tan∠EAD= ,

∵tan∠DAC= ,AC=8,

∴CD=6,

由勾股定理得,AD= =10,

= ,

解得,DE=

∴AE= = ,

∴⊙O的半徑為


【解析】(1)連接OD,根據(jù)切線的性質(zhì)得到OD⊥BC,根據(jù)平行線的性質(zhì)和等腰三角形的性質(zhì)證明;(2)連接CE,根據(jù)正切的定義和勾股定理求出AD,根據(jù)正切的定義計算即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,AD⊥BC,垂足為D,AE∥BC,DE∥AB. 證明:
(1)AE=DC;
(2)四邊形ADCE為矩形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線相交于點O,點M,N分別是邊BC,CD上的動點(不與點B,C,D重合),AM,AN分別交BD于點E,F(xiàn),且∠MAN始終保持45°不變.

(1)求證: = ;
(2)求證:AF⊥FM;
(3)請?zhí)剿鳎涸凇螹AN的旋轉(zhuǎn)過程中,當∠BAM等于多少度時,∠FMN=∠BAM?寫出你的探索結(jié)論,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在四邊形ABCD中,AD∥BC,E為邊CB延長線上一點,聯(lián)結(jié)DE交邊AB于點F,聯(lián)結(jié)AC交DE于點G,且 =
(1)求證:AB∥CD;
(2)如果AD2=DGDE,求證: =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD外取一點E,連接AE、BEDE.過點AAE的垂線交DE于點P.若AE=AP=1,PB=.下列結(jié)論:①△APD≌△AEB;②B到直線AE的距離為;③EBED;④SAPD+SAPB=1+;⑤S正方形ABCD=4+.其中正確結(jié)論的序號是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y=kx+6分別與x軸、y軸交于點E,F(xiàn),已知點E的坐標為(﹣8,0),點A的坐標為(﹣6,0).

(1)求k的值;

(2)若點P(x,y)是該直線上的一個動點,且在第二象限內(nèi)運動,試寫出OPA的面積S關(guān)于x的函數(shù)解析式,并寫出自變量x的取值范圍.

(3)探究:當點P運動到什么位置時,OPA的面積為,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD(圖1)按如下步驟操作:(1)以過點A的直線為折痕

折疊紙片,使點B恰好落在AD邊上,折痕與BC邊交于點E(如圖2);(2)以過點E

直線為折痕折疊紙片,使點A落在BC邊上,折痕EFAD邊于點F(如圖3);(3)將紙

片收展平,那么∠AFE的度數(shù)為 ( )

A. 60° B. 67.5° C. 72° D. 75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知BDABC的角平分線請按如下要求操作與解答:

1)過點DDEBCAB于點E.若A=68°,AED=42°,求BCD各內(nèi)角的度數(shù);

2)畫ABC的角平分線CFBD于點M,若A=60°,請找出圖中所有與A相等的角,并說明理由.

查看答案和解析>>

同步練習冊答案