【題目】點(diǎn)D是等邊三角形ABC外一點(diǎn),且DB=DC,∠BDC=120°,將一個三角尺60°角的頂點(diǎn)放在點(diǎn)D上,三角尺的兩邊DP,DQ分別與射線AB,CA相交于E,F兩點(diǎn).
(1)當(dāng)EF∥BC時,如圖①所示,求證:EF=BE+CF.
(2)當(dāng)三角尺繞點(diǎn)D旋轉(zhuǎn)到如圖②所示的位置時,線段EF,BE,CF之間的上述數(shù)量關(guān)系是否成立?如果成立,請說明理由;如果不成立,寫出EF,BE,CF之間的數(shù)量關(guān)系,并說明理由.
(3)當(dāng)三角尺繞點(diǎn)D繼續(xù)旋轉(zhuǎn)到如圖③所示的位置時,(1)中的結(jié)論是否發(fā)生變化?如果不變化,直接寫出結(jié)論;如果變化,請直接寫出EF,BE,CF之間的數(shù)量關(guān)系.
【答案】(1)見解析;(2)結(jié)論仍然成立.理由見解析;(3)結(jié)論發(fā)生變化.EF=CF-BE.
【解析】
(1)根據(jù)△ABC是等邊三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,這樣可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以證明△AEF是等邊三角形,也可以證明△BDE≌△CDF,可以得到DE=DF,由此進(jìn)一步得到
DE=DF∠BDE=∠CDF=30°,這樣可以得到BE=DE=DF=CF,而△DEF是等邊三角形,所以題目的結(jié)論就可以證明出來了;(2)結(jié)論仍然成立.如圖,在AB的延長線上取點(diǎn)F’,使BF’=CF,連接DF’,根據(jù)(1)的結(jié)論可以證明△DCF≌△DBF’,根據(jù)全等三角形的性質(zhì)可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以證明△EDF’≌△EDF,從而證明題目的結(jié)論;(3)結(jié)論發(fā)生變化. EF=BE-CF.如圖,在射線AB上取點(diǎn)F′,使BF′=CF,連接DF′.由(1)得△DCF≌△DBF′(SAS).根據(jù)全等三角形的性質(zhì)可以得到DF=DF′,∠BDF′=∠CDF.又因為∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),從而證明題目的結(jié)論EF=EF′=BF′- BE=CF- BE。
(1)證明:∵△ABC是等邊三角形,
∴AB=AC,∠ABC=∠ACB=60°.
∵DB=DC,∠BDC=120°,
∴∠DBC=∠DCB=30°.
∴∠DBE=∠DBC+∠ABC=90°,
∠DCF=∠DCB+∠ACB=90°.
∵EF∥BC,∴∠AEF=∠ABC=60°,
∠AFE=∠ACB=60°.∴AE=AF.
∴BE=AB-AE=AC-AF=CF.
又∵DB=DC,∠DBE=∠DCF=90°,
∴△BDE≌△CDF.
∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.
∴BE=DE=DF=CF.
∵∠EDF=60°,∴△DEF是等邊三角形,
即DE=DF=EF.
∴BE+CF=DE+DF=EF,
即EF=BE+CF.
(2)解:結(jié)論仍然成立.
理由如下:如圖,在射線AB上取點(diǎn)F′,
使BF′=CF,連接DF′.
由(1)得∠DBE=∠DCF=90°,
則∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠EDB+∠CDF=60°.
∴∠EDB+∠BDF′=∠EDF′=60°.
∴∠EDF′=∠EDF.
又∵DE=DE,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BE+BF′=BE+CF.
(3)解:結(jié)論發(fā)生變化.EF=CF-BE.
理由:在射線AB上取點(diǎn)F′,
使BF′=CF,連接DF′.
由(1)得∠DBA=∠DCF=90°,
則∠DBF′=∠DCF=90°.
又∵BD=CD,
∴△DCF≌△DBF′(SAS).
∴DF=DF′,∠BDF′=∠CDF.
又∵∠BDC=120°,∠EDF=60°,
∴∠FDB+∠CDF=60°.
∴∠FDB+∠BDF′=∠FDF′=120°.
∴∠EDF′=∠EDF=60°.
又∵DE=DE,DF=DF′,
∴△EDF′≌△EDF(SAS).
∴EF=EF′=BF′- BE=CF- BE。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是由一些大小相同且棱長為1的小正方體組合成的簡單幾何體.
(1)該幾何體的立體圖如圖所示,請在下面方格紙中分別畫出它的左視圖和俯視圖(請涂上陰影):
(2)這個簡單幾何體的表面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A表示的數(shù)a、點(diǎn)B表示數(shù)b,a、b滿足|a﹣40|+(b+8)2=0.點(diǎn)O是數(shù)軸原點(diǎn).
(1)點(diǎn)A表示的數(shù)為 ,點(diǎn)B表示的數(shù)為 ,線段AB的長為 .
(2)若點(diǎn)A與點(diǎn)C之間的距離表示為AC,點(diǎn)B與點(diǎn)C之間的距離表示為BC,請在數(shù)軸上找一點(diǎn)C,使AC=2BC,則點(diǎn)C在數(shù)軸上表示的數(shù)為 .
(3)現(xiàn)有動點(diǎn)P、Q都從B點(diǎn)出發(fā),點(diǎn)P以每秒1個單位長度的速度向終點(diǎn)A移動;當(dāng)點(diǎn)P移動到O點(diǎn)時,點(diǎn)Q才從B點(diǎn)出發(fā),并以每秒3個單位長度的速度向右移動,且當(dāng)點(diǎn)P到達(dá)A點(diǎn)時,點(diǎn)Q就停止移動,設(shè)點(diǎn)P移動的時間為t秒,問:當(dāng)t為多少時,P、Q兩點(diǎn)相距4個單位長度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校開展“書香校園,誦讀經(jīng)典”活動,隨機(jī)抽查了部分學(xué)生,對他們每天的課外閱讀時長進(jìn)行統(tǒng)計,并將結(jié)果分為四類:設(shè)每天閱讀時長為t分鐘,當(dāng)0<t≤20時記為A類,當(dāng)20<t≤40時記為B類,當(dāng)40<t≤60時記為C類,當(dāng)t>60時記為D類,收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)圖中提供的信息,解答下列問題:
(1)這次共抽取了 名學(xué)生進(jìn)行調(diào)查統(tǒng)計,扇形統(tǒng)計圖中的D類所對應(yīng)的扇形圓心角為 °;
(2)將條形統(tǒng)計圖補(bǔ)充完整;
(3)若該校共有2000名學(xué)生,請估計該校每天閱讀時長超過40分鐘的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:正方形ABCD和等腰直角三角形AEF,AE=AF(AE<AD),連接DE、BF,P是DE的中點(diǎn),連接AP。將△AEF繞點(diǎn)A逆時針旋轉(zhuǎn)。
(1)如圖①,當(dāng)△AEF的頂點(diǎn)E、F恰好分別落在邊AB、AD時,則線段AP與線段BF的位置關(guān)系為 ,數(shù)量關(guān)系為 。
(2)當(dāng)△AEF繞點(diǎn)A逆時針旋轉(zhuǎn)到如圖②所示位置時,證明:第(1)問中的結(jié)論仍然成立。
(3)若AB=3,AE=1,則線段AP的取值范圍為 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在解決問題:已知a=,求2a2﹣8a+1的值,他是這樣分析與解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
請你根據(jù)小明的分析過程,解決如下問題:
(1)化簡+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,對角線 AC、BD交于點(diǎn) M,點(diǎn)E在邊BC上,且∠DAE=∠DCB,聯(lián)結(jié)AE,AE與BD交于點(diǎn)F.
(1)求證:;
(2)連接DE,如果BF=3FM,求證:四邊形ABED是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y=(k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,用正方形是墩壘石梯,下圖分別表示壘到一、二階梯時的情況,那么照這樣壘下去
一級 二級
①填出下表中未填的兩空,觀察規(guī)律。
階梯級數(shù) | 一級 | 二級 | 三級 | 四級 |
石墩塊數(shù) | 3 | 9 |
②到第n級階梯時,共用正方體石墩_______________塊(用n的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com