圖甲是一個(gè)三角形,分別連接這個(gè)三角形三邊的中點(diǎn)得到圖乙;再分別連接圖乙中間的小三角形三邊的中點(diǎn),得到圖丙,按此方法繼續(xù)下去,請(qǐng)你根據(jù)每個(gè)圖中三角形個(gè)數(shù)的規(guī)律,完成下列問(wèn)題:

(1)將下表填寫(xiě)完整:
圖形編號(hào)12345
三角形個(gè)數(shù)159
(2)在第n個(gè)圖形中有    個(gè)三角形(用含n的式子表示).
【答案】分析:結(jié)合題意,總結(jié)可知,每個(gè)圖中三角形個(gè)數(shù)比圖形的編號(hào)的4倍多3個(gè)三角形.
解答:解:圖形編號(hào)為4的三角形的個(gè)數(shù)是4×4-3=13,圖形編號(hào)為5的三角形的個(gè)數(shù)是4×5-3=17,圖形編號(hào)為n的三角形的個(gè)數(shù)是4n-3.
點(diǎn)評(píng):此類(lèi)問(wèn)題,應(yīng)從三角形的個(gè)數(shù)與圖形的編號(hào)之間的關(guān)系入手.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、四年一度的國(guó)際數(shù)學(xué)家大會(huì)會(huì)標(biāo)如圖甲,它是由四個(gè)相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形.現(xiàn)有一張長(zhǎng)為6.5cm、寬為2cm的紙片,如圖乙,請(qǐng)你根據(jù)圖甲的啟示將它分割成6塊,再拼合成一個(gè)正方形.(要求:先在圖乙中畫(huà)出分割線,再畫(huà)出拼成的正方圖甲形并標(biāo)明相應(yīng)數(shù)據(jù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:
(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫(huà)出分割線,并說(shuō)明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為SN
①若△DEF的面積為10000,當(dāng)n為何值時(shí),2<Sn<3?(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫(xiě)出三次的嘗試估算過(guò)程)
②當(dāng)n>1時(shí),請(qǐng)寫(xiě)出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式.(不必證明)精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

18、如圖,有四塊全等的直角三角形紙片,直角邊長(zhǎng)分別是1,2,請(qǐng)利用這四塊紙片按下列要求在6×6方格紙中各拼一個(gè)圖形,直角頂點(diǎn)在格點(diǎn)上.
(1)圖甲中作出是軸對(duì)稱圖形而不是中心對(duì)稱圖形;
(2)圖乙中作出是中心對(duì)稱圖形而不是軸對(duì)稱圖形;
(3)圖丙中作出既是軸對(duì)稱圖形又是中心對(duì)稱圖形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•慶元縣模擬)定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.
探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫(huà)出分割線,并說(shuō)明理由.
(2)一般地,“任意三角形都是自相似圖形”,只要順次連接三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連接各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連接它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)…依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn
①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?
(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫(xiě)出二次的嘗試估算過(guò)程)
②當(dāng)n>1時(shí),請(qǐng)寫(xiě)出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年浙江省麗水市慶元縣中考模擬數(shù)學(xué)試卷(解析版) 題型:解答題

定義:若某個(gè)圖形可分割為若干個(gè)都與他相似的圖形,則稱這個(gè)圖形是自相似圖形.

探究:(1)如圖甲,已知△ABC中∠C=90°,你能把△ABC分割成2個(gè)與它自己相似的小直角三角形嗎?若能,請(qǐng)?jiān)趫D甲中畫(huà)出分割線,并說(shuō)明理由.

(2)一般地,“任意三角形都是自相似圖形”,只要順次連結(jié)三角形各邊中點(diǎn),則可將原三分割為四個(gè)都與它自己相似的小三角形.我們把△DEF(圖乙)第一次順次連結(jié)各邊中點(diǎn)所進(jìn)行的分割,稱為1階分割(如圖1);把1階分割得出的4個(gè)三角形再分別順次連結(jié)它的各邊中點(diǎn)所進(jìn)行的分割,稱為2階分割(如圖2)……依次規(guī)則操作下去.n階分割后得到的每一個(gè)小三角形都是全等三角形(n為正整數(shù)),設(shè)此時(shí)小三角形的面積為Sn

①若△DEF的面積為1000,當(dāng)n為何值時(shí),3<Sn<4?

(請(qǐng)用計(jì)算器進(jìn)行探索,要求至少寫(xiě)出二次的嘗試估算過(guò)程)

②當(dāng)n>1時(shí),請(qǐng)寫(xiě)出一個(gè)反映Sn-1,Sn,Sn+1之間關(guān)系的等式(不必證明)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案