【題目】閱讀解題過程,回答問題.
如圖,OC在∠AOB內,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數.
解:過O點作射線OM,使點M,O,A在同一直線上.
因為∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數.
【答案】(1)120°,180°-n°;(2)2x°-y°.
【解析】試題分析:(1)根據角的和差關系進行計算可求得:
如果∠BOC=60°時,
∠AOD=∠COD+∠AOC=∠COD+(90°-∠COB)= 90°+(90°-60°)= 90°+30°=120°,
如果∠BOC=n°時,
∠AOD=∠COD+∠AOC=∠COD+(90°-∠COB)= 90°+(90°-n°)= 180°-n°,
(2)根據角的和差關系進行計算可得:
∠BOC=∠AOD-∠DOB-∠AOC =∠AOD-(∠DOC-∠COB)-(∠AOB-∠COB),
所以∠BOC=∠AOD-∠DOC+∠COB-∠AOB+∠COB,
所以∠BOC=∠DOC+∠AOB-∠AOD,
如果∠AOB=∠DOC=x°,∠AOD=y°,
所以∠BOC= 2x°-y°.
試題解析:(1)如果∠BOC=60°,那么∠AOD=180°-60°=120°,
如果∠BOC=n°,那么∠AOD=180°-n°,
(2)因為∠AOB=∠DOC=x°,∠AOD=y°,
且∠AOD=∠AOB+∠DOC-∠BOC,所以∠BOC=∠AOB+∠DOC-∠AOD=2x°-y°.
科目:初中數學 來源: 題型:
【題目】某公司第4月份投入1000萬元科研經費,計劃6月份投入科研經費比4月多500萬元.設該公司第5、6個月投放科研經費的月平均增長率為x,則所列方程正確的為( )
A. 1000(1+x)2=1000+500
B. 1000(1+x)2=500
C. 500(1+x)2=1000
D. 1000(1+2x)=1000+500
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】根據給出的數軸及已知條件,解答下面的問題:
(1)已知點A,B,C表示的數分別為1,﹣2.5,﹣3觀察數軸,與點A的距離為3的點表示的數是 ,B,C兩點之間的距離為 ;
(2)若將數軸折疊,使得A點與C點重合,則與B點重合的點表示的數是 ;若此數軸上M,N兩點之間的距離為2015(M在N的左側),且當A點與C點重合時,M點與N點也恰好重合,則M,N兩點表示的數分別是:M ,N ;
(3)若數軸上P,Q兩點間的距離為m(P在Q左側),表示數n的點到P,Q兩點的距離相等,則將數軸折疊,使得P點與Q點重合時,P,Q兩點表示的數分別為:P ,Q (用含m,n的式子表示這兩個數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知線段AB=20 cm,直線AB上有一點C,且BC=6 cm,點M是線段AB的中點,點N是線段BC的中點,則MN=____________ cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016廣東省茂名市第20題)有四張正面分別標有數字1,2,3,4的不透明卡片,它們除數字外其余全部相同,現(xiàn)將它們背面朝上洗均勻.
(1)隨機抽取一張卡片,求抽到數字“2”的概率;
(2)隨機抽取一張卡片,然后不放回,再隨機抽取一張卡片,請用列表或畫樹狀圖的方法求出第一次抽到數字“1”且第二次抽到數字“2”的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(2016浙江省溫州市第18題)為了解學生對“垃圾分類”知識的了解程度,某學校對本校學生進行抽樣調查,并繪制統(tǒng)計圖,其中統(tǒng)計圖中沒有標注相應人數的百分比.請根據統(tǒng)計圖回答下列問題:
(1)求“非常了解”的人數的百分比.
(2)已知該校共有1200名學生,請估計對“垃圾分類”知識達到“非常了解”和“比較了解”程度的學生共有多少人?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com