如圖,在Rt△ABC中,∠C=90°,AC=8,BC=6,按圖中所示方法將△BCD沿BD折疊,使點C落在邊AB上的點C′處,則點D到AB的距離=______.
∵∠C=90°,AC=8,BC=6,
∴AB=10.
根據(jù)折疊的性質,BC=BC′,CD=DC′,∠C=∠AC′D=90°.
∴AC′=10-6=4.
在△AC′D中,設DC′=x,則AD=8-x,根據(jù)勾股定理得
(8-x)2=x2+42
解得x=3.
∴DC′=CD=3,
故答案為3.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

為了探索代數(shù)式
x2+1
+
(8-x)2+25
的最小值,小明巧妙的運用了“數(shù)形結合”思想.具體方法是這樣的:如圖,C為線段BD上一動點,分別過點B、D作AB⊥BD,ED⊥BD,連接AC、EC.已知AB=1,DE=5,BD=8,設BC=x.則AC=
x2+1
CE=
(8-x)2+25
,則問題即轉化成求AC+CE的最小值.
(1)我們知道當A、C、E在同一直線上時,AC+CE的值最小,于是可求得
x2+1
+
(8-x)2+25
的最小值等于______,此時x=______;
(2)請你根據(jù)上述的方法和結論,試構圖求出代數(shù)式
x2+4
+
(12-x)2+9
的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

取一張矩形的紙進行折疊,具體操作過程如下:
第一步:先把矩形ABCD對折,折痕為MN,如圖1;
第二步:再把B點疊在折痕線MN上,折痕為AE,點B在MN上的對應點為Bn,得Rt△ABE,如圖2;
第三步:沿EB線折疊得折痕EF,如圖3;
利用展開圖4探究:
(1)△AEF是什么三角形?證明你的結論.
(2)對于任一矩形,按照上述方法是否都能折出這種三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,∠A=65°,∠B=75°,將紙片的一角折疊,使點C落在△ABC外,若∠2=20°,則∠1的度數(shù)為______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,把正方形ABCD沿著直線EF對折,使頂點C落在邊AB的中點M,已知正方形的邊長為4,那么折痕EF的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,動手操作:長為1,寬為a的長方形紙片(
1
2
<a<1
),如圖那樣折一下,剪下一個邊長等于長方形寬度的正方形(稱為第一次操作);再把剩下的長方形如圖那樣折一下,剪下一個邊長等于此時長方形寬度的正方形(稱為第二次操作);如此反復操作下去.若在第n此操作后,剩下的長方形為正方形,則操作終止.當n=3時,a的值為( 。
A.
2
3
B.
3
4
C.
3
5
D.
3
4
3
5

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

有一長方形紙片ABCD,按如圖方式折疊,使點B與點D重合,折痕為EF.
(1)請說明△DEF是等腰三角形;
(2)若AD=3,AB=9,求BE的長;
(3)若連接BF,試說明四邊形DEBF是菱形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,點A的坐標是(4,0),點B的坐標是(2,3),點C的坐標是(0,3).
(1)作出四邊形OABC關于y軸對稱的圖形,并標出點B對應點的坐標.
(2)在y軸上找一點P,使PA+PB的值最小,并求出點P的坐標.(要求不寫作法,保留作圖痕跡)

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小明從平面鏡中看到一個沒有標明鐘點數(shù)的時鐘鐘面(如圖),則此時實際時刻是______.

查看答案和解析>>

同步練習冊答案