【題目】王老師家買了一套新房其結(jié)構(gòu)如圖所示(單位:m)他打算將臥室鋪上木地板,其余部分鋪上地磚

(1)木地板和地磚分別需要多少平方米?

(2)如果地磚的價格為每平方米x,木地板的價格為每平方米3x,那么王老師需要花多少錢?

【答案】1木地板需要4ab m2,地磚需要11ab m2;(2王老師需要花23abx

【解析】試題分析:(1)根據(jù)長方形面積公式計(jì)算出臥室面積即為木地板的面積,客廳的面積+衛(wèi)生間的面積+廚房的面積就是需要鋪的地磚面積;

(2)利用總面積×單價=總錢數(shù)求解即可.

試題解析:(1)臥室的面積是2b(4a2a)4ab(平方米),

廚房、衛(wèi)生間、客廳的面積和是b·(4a2aa)a·(4b2b)2a·4bab2ab8ab11ab(平方米)

即木地板需要4ab平方米,地磚需要11ab平方米

211ab·x4ab·3x11abx12abx23abx(),

即王老師需要花23abx

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】實(shí)驗(yàn)與探究:

)如圖,直線為第一、三象限的角平分線,觀察易知關(guān)于直線的對稱點(diǎn)的坐標(biāo)為,請?jiān)趫D中分別標(biāo)明、關(guān)于直線的對稱點(diǎn)、的位置,并寫出他們的坐標(biāo): ____________________

)結(jié)合圖形觀察以上三組點(diǎn)的坐標(biāo),你會發(fā)現(xiàn):坐標(biāo)平面內(nèi)任一點(diǎn)關(guān)于第一、三象限的角平分線的對稱點(diǎn)的坐標(biāo)為__________ (不必證明)

)已知兩點(diǎn)、,在直線上是否存在一點(diǎn),使點(diǎn)、兩點(diǎn)的距離之和最小,并求出最小距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將一副三角板中的兩塊直角三角尺的直角頂點(diǎn)C按如圖方式疊放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):

(1)①若∠DCE=45°,則∠ACB的度數(shù)為  ;

②若∠ACB=140°,求∠DCE的度數(shù);

(2)由(1)猜想∠ACB與∠DCE的數(shù)量關(guān)系,并說明理由.

(3)當(dāng)∠ACE<180°且點(diǎn)E在直線AC的上方時,這兩塊三角尺是否存在一組邊互相平行?若存在,請直接寫出∠ACE角度所有可能的值(不必說明理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示是某一蓄水池每小時的排水量Vm3/h)與排完水池中的水所用的時間th)之間的函數(shù)關(guān)系圖象.

請你根據(jù)圖象提供的信息求出此蓄水池的蓄水量;

寫出此函數(shù)的解析式;

若要6h排完水池中的水,那么每小時的排水量應(yīng)該是多少?

如果每小時排水量是5m3,那么水池中的水將要多少小時排完?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:

(1)x4·x6(x5)2;

(2)(xy)2·x4y(2x2y)3;

(3)(13a)22(13a);

(4)(a2b)(a2b)b(a8b)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某天,一蔬菜經(jīng)營戶用60元錢從蔬菜批發(fā)市場批了西紅柿和豆角共40㎏到菜市場去賣,西紅柿和豆角這天的批發(fā)價與零售價如下表所示:問:他當(dāng)天賣完這些西紅柿和豆角能賺多少錢?

品名

西紅柿

豆角

批發(fā)價(單位:元/kg)

1.2

1.6

零售價(單位:元/kg)

1.8

2.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,E、B、F、C四點(diǎn)在一條直線上,EB=CF,A=D,再添一個條件仍不能證明ABC≌△DEF的是( )

A. AB=DE B. DFAC C. E=ABC D. ABDE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:ABCD,直線lAB、CD分別于點(diǎn)E、F,點(diǎn)MEF上,N是直線CD上的一個動點(diǎn)(點(diǎn)N不與F重合)

(1)當(dāng)點(diǎn)N在射線FC上運(yùn)動時,∠FMN+FNM=AEF,說明理由;

(2)當(dāng)點(diǎn)N在射線FD上運(yùn)動時,∠FMN+FNM與∠AEF有什么關(guān)系并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖ABC中,C=90°,B=30°,以A為圓心,任意長為半徑畫弧分別交AB、AC于點(diǎn)M和N再分別以M、N為圓心,大于MN的長為半徑畫弧兩弧交于點(diǎn)P,連結(jié)AP并延長交BC于點(diǎn)D,則下列說法AD是BAC的平分線②∠ADC=60°點(diǎn)D在AB的中垂線上;正確的個數(shù)是

查看答案和解析>>

同步練習(xí)冊答案