【題目】如圖,在△ABC中,AB=AC,點D,E,F分別在邊BC,AC,AB上,且BD=CE,DC=BF,連結DE,EF,DF,∠1=60°
(1)求證:△BDF≌△CED.
(2)判斷△ABC的形狀,并說明理由.
(3)若BC=10,當BD= 時,DF⊥BC.(只需寫出答案,不需寫出過程)
【答案】(1)見解析;(2)△ABC是等邊三角形,見解析;(3)
【解析】
(1)由等腰三角形的性質(zhì)得出∠B=∠C,由已知條件即可得出△BDF≌△CED(SAS);
(2)由(1)得△BDF≌△CED,得出∠BFD=∠CDE,證出∠B=∠1=60°,即可得出△ABC是等邊三角形;
(3)作FM⊥BC于M,由(1)得△BDF≌△CED,得出BF=CD,由(2)得△ABC是等邊三角形,得出∠B=∠C=60°,證出∠BFM=30°,得出BM=BF=CD,BM=BC=,得出M與D重合,即可得出結論.
(1)∵AB=AC,
∴∠B=∠C,
在△BDF和△CED中,,
∴△BDF≌△CED(SAS);
(2)△ABC是等邊三角形,理由如下:
由(1)得:△BDF≌△CED,
∴∠BFD=∠CDE,
∵∠CDF=∠B+∠BFD=∠1+∠CDE,
∴∠B=∠1=60°,
∵AB=AC,
∴△ABC是等邊三角形;
(3)當BD=時,DF⊥BC,理由如下:
作FM⊥BC于M,如圖所示:
由(1)得:△BDF≌△CED,
∴BF=CD,
由(2)得:△ABC是等邊三角形,
∴∠B=∠C=60°,
∵FM⊥BC,
∴∠BFM=30°,
∴BM=BF=CD,
∴BM=BC=,
∴M與D重合,
∴DF⊥BC;
故答案為:
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是由27個相同的小立方塊搭成的幾何體,它的三個視圖是3×3的正方形,若拿掉若干個小立方塊(幾何體不倒掉),其三個視圖仍都為3×3的正方形,則最多能拿掉小立方塊的個數(shù)為( 。
A. 10 B. 12 C. 15 D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,平面直角坐標系中,點為坐標原點,點在軸的負半軸上,點在軸的正半軸上,以為斜邊向上作等腰直角,交軸于點,.
(1)如圖1,求點的坐標;
(2)如圖2,動點從點出發(fā)以每秒1個單位長度的速度沿軸的正半軸運動,設運動時間為秒,連接,設的面積為,請用含的式子來表示;
(3)如圖3,在(2)的條件下,當點在的延長線上時,點在直線的下方,且,.連接,取的中點,連接并延長交于點,連接,當時,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,E是等邊三角形ABC的邊AB所在直線上一點,D是邊BC所在直線上一點,且D與C不重合,若EC=ED.則稱D為點C關于等邊三角形ABC的反稱點,點E稱為反稱中心.
在平面直角坐標系xOy中,
(1)已知等邊三角形AOC的頂點C的坐標為(2,0),點A在第一象限內(nèi),反稱中心E在直線AO上,反稱點D在直線OC上.
①如圖2,若E為邊AO的中點,在圖中作出點C關于等邊三角形AOC的反稱點D,并直接寫出點D的坐標:___.
②若AE=2,求點C關于等邊三角形AOC的反稱點D的坐標;
(2)若等邊三角形ABC的頂點為B(n,0),C(n+1,0),反稱中心E在直線AB上,反稱點D在直線BC上,且2≤AE<3.請直接寫出點C關于等邊三角形ABC的反稱點D的橫坐標t的取值范圍:P_____(用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市在創(chuàng)建全國文明城市過程中,決定購買A,B兩種樹苗對某路段道路進行綠化改造,已知購買A種樹苗8棵,B種樹苗3棵,需要950元;若購買A種樹苗5棵,B種樹苗6棵,則需要800元.
(1)求購買A,B兩種樹苗每棵各需多少元?
(2)考慮到綠化效果和資金周轉(zhuǎn),購進A種樹苗不能少于52棵,且用于購買這兩種樹苗的資金不能超過7650元,若購進這兩種樹苗共100棵,則有哪幾種購買方案?
(3)某包工隊承包種植任務,若種好一棵A種樹苗可獲工錢30元,種好一棵B種樹苗可獲工錢20元,在第(2)問的各種購買方案中,種好這100棵樹苗,哪一種購買方案所付的種植工錢最少?最少工錢是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線經(jīng)過點A(,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB∥CD,∠ABK的角平分線BE的反向延長線和∠DCK的角平分線CF的反向延長線交于點H,∠K﹣∠H=27°,則∠K=( 。
A. 76° B. 78° C. 80° D. 82°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,現(xiàn)有一張邊長為4的正方形紙片,點P為正方形AD邊上的一點(不與點A、點D重合)將正方形紙片折疊,使點B落在P處,點C落在G處,PG交DC于H,折痕為EF,連接BP、BH.
(1)求證:∠APB=∠BPH;
(2)當點P在邊AD上移動時,△PDH的周長是否發(fā)生變化?并證明你的結論;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們定義:如圖1,在△ABC看,把AB點A順時針旋轉(zhuǎn)α(0°<α<180°)得到AB',把AC繞點A逆時針旋轉(zhuǎn)β得到AC',連接B'C'.當α+β=180°時,我們稱△A'B'C'是△ABC的“旋補三角形”,△AB'C'邊B'C'上的中線AD叫做△ABC的“旋補中線”,點A叫做“旋補中心”.
特例感知:
(1)在圖2,圖3中,△AB'C'是△ABC的“旋補三角形”,AD是△ABC的“旋補中線”.
①如圖2,當△ABC為等邊三角形時,AD與BC的數(shù)量關系為AD= BC;
②如圖3,當∠BAC=90°,BC=8時,則AD長為 .
猜想論證:
(2)在圖1中,當△ABC為任意三角形時,猜想AD與BC的數(shù)量關系,并給予證明.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com