楊老師在上四邊形時給學(xué)生出了這樣一個題.如圖,若在等腰梯形ABCD中,M、N分別是AD、BC的中點,E、F分別是BM、CM的中點時.提出以下問題:
(1)在不添加其它線段的前提下,圖中有哪幾對全等三角形?請直接寫出結(jié)論;
(2)猜想四邊形MENF是何種的四邊形?并加以說明;
(3)連接MN,當(dāng)MN與BC有怎樣的數(shù)量關(guān)系時,四邊形MENF是正方形?(直接寫出關(guān)系式,不需要說明理由)
(1)△ABM≌△DCM,△BNE≌△CNF;

(2)四邊形MENF是菱形.理由如下:
∵四邊形ABCD為等腰梯形,
∴AB=CD,∠A=∠D,
∵M(jìn)是AD的中點,
∴AM=DN,
∴△ABM≌△DCM,
∴BM=CM,
∵N、E、F分別是BC、BM、CM的中點,
∴EN=
1
2
CM,NF=
1
2
BM,ME=
1
2
BM,MF=
1
2
CM,
∴ME=MF=EN=FN,
∴四邊形MENF是菱形;

(3)當(dāng)MN=
1
2
BC時,四邊形MENF是正方形.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,梯形OABC中,O為直角坐標(biāo)系的原點,A、B、C的坐標(biāo)分別為(14,0)、(14,3)、(4,3).點P、Q同時從原點出發(fā),分別作勻速運動,其中點P沿OA向終點A運動,速度為每秒1個單位;點Q沿OC、CB向終點B運動,當(dāng)這兩點中有一點到達(dá)自己的終點時,另一點也停止運動.設(shè)P從出發(fā)起運動了t秒.
(1)如果點Q的速度為每秒2個單位,
①試分別寫出這時點Q在OC上或在CB上時的坐標(biāo)(用含t的代數(shù)式表示,不要求寫出t的取值范圍);
②求t為何值時,PQOC?
(2)如果點P與點Q所經(jīng)過的路程之和恰好為梯形OABC的周長的一半,
①試用含t的代數(shù)式表示這時點Q所經(jīng)過的路程和它的速度;
②試問:這時直線PQ是否可能同時把梯形OABC的面積也分成相等的兩部分?如有可能,求出相應(yīng)的t的值和P、Q的坐標(biāo);如不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形兩底的差等于底邊上高的2倍,則這個梯形較小的底角為______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

用四個相同的等腰梯形拼成如圖所示的四邊形ABCD,則∠A=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

等腰梯形的腰長為13cm,兩底差為10cm,則高為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

梯形ABCD,ADBC,∠A=90°AB=8cm,AD=24cm,BC=26cm點,點P從A出發(fā)沿線段AD的方向以1cm/s的速度運動;點Q從C出發(fā)沿線段CB的方向以3cm/s的速度運動,點P、Q分別從A、C同時出發(fā),當(dāng)點P運動到點D時,點Q隨之停止運動.設(shè)運動時間為t(秒).
(1)設(shè)四邊形PQCD的面積為S,寫出S與t之間的函數(shù)關(guān)系(注明自變量的取值范圍);
(2)當(dāng)t為何值時,四邊形PQCD為等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在等腰梯形ABCD中,AB=2,BC=4,∠B=45°,則該梯形的面積是( 。
A.2
2
-1
B.4-
2
C.8
2
-4
D.4
2
-2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在?ABCD中,BC=4m,E為AD的中點,F(xiàn)、G分別為BE、CD的中點,則FG=______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,AD=7,BC=15,∠B=60°,EF為中位線.求:
(1)EF的長.
(2)AB的長.

查看答案和解析>>

同步練習(xí)冊答案