精英家教網 > 初中數學 > 題目詳情

【題目】如圖,四邊形ABCD與四邊形AEFG是位似圖形,且ACAF=2:3,則下列結論不正確的是( 。
A.四邊形ABCD與四邊形AEFG是相似圖形
B.ADAE的比是2:3
C.四邊形ABCD與四邊形AEFG的周長比是2:3
D.四邊形ABCD與四邊形AEFG的面積比是4:9

【答案】B
【解析】∵四邊形ABCD與四邊形AEFG是位似圖形;A.四邊形ABCD與四邊形AEFG一定是相似圖形,故正確;
B.ADAG是對應邊,故ADAE=2:3;故錯誤;
C.四邊形ABCD與四邊形AEFG的相似比是2:3,故正確;
D.則周長的比是2:3,面積的比是4:9,故正確.
故選B.
本題主要考查了位似變換的定義及作圖,位似變換就是特殊的相似,且位似圖形上任意一對對應點到位似中心的距離之比等于相似比,因而周長的比等于相似比,面積的比等于相似比的平方.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】畫出函數的圖象,利用圖象求解下列問題:

(1)求方程的解;

(2)求不等式的解集;

(3)若,求的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(2016甘肅省白銀市)如圖,在平面直角坐標系中,ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網格的格點上.

(1)畫出ABC關于x軸的對稱圖形A1B1C1

(2)將A1B1C1沿x軸方向向左平移3個單位后得到A2B2C2,寫出頂點A2B2,C2的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABC是邊長為3的等邊三角形,BDC是等腰三角形,且BDC=120°.以D為頂點作一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則AMN的周長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,己知△ABC , 任取一點O , 連AOBO , CO , 并取它們的中點D , EF , 得△DEF , 則下列說法正確的個數是( 。
①△ABC與△DEF是位似圖形; ②△ABC與△DEF是相似圖形;
③△ABC與△DEF的周長比為1:2;④△ABC與△DEF的面積比為4:1.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平面直角坐標系中,點A、B分別在x、y軸上,點B的坐標為(0,1),∠BAO=30°.

(1)求AB的長度;

(2)以AB為一邊作等邊ABE,作OA的垂直平分線MN交AB的垂線AD于點D.求證:BD=OE;

(3)在(2)的條件下,連接DE交AB于F.求證:F為DE的中點.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題背景

在△ABC中,AB,BC,AC的長分別為,,,求這個三角形的面積.曉輝同學在解答這道題時,先建立一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點三角形ABC(即△ABC的三個頂點都在小正方形的頂點處),如圖①所示,這樣不需求△ABC的高,而借用網格就能計算出它的面積.

(1)請你直接寫出△ABC的面積:________.

(2)我們把上述求△ABC面積的方法叫做構圖法.若△ABC的三邊長分別為a,2a,a(a>0),請利用圖②的正方形網格(每個小正方形的邊長為a)畫出相應的△ABC,并求出它的面積.

探索創(chuàng)新

(3)若△ABC的三邊長分別為,2 (m>0,n>0,且m≠n),試運用構圖法(自己重新設計一個符合結構特征的網格)求出這個三角形的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD的對角線AC.BD相交于點O , 過點OOEACADE , 若AB=6,AD=8,求sinOEA的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知等邊△ABC和等邊△BPE,點P在BC的延長線上,EC的延長線交AP于M,連BM.

(1)求證:AP=CE;

(2)求∠PME的度數;

(3)求證:BM平分∠AME;

(4)AM,BM,MC之間有怎樣的數量關系,直接寫出,不需證明.

查看答案和解析>>

同步練習冊答案