【題目】為了進(jìn)一步了解八年級學(xué)生的身體素質(zhì)情況,體育老師以八年級(1)班50位學(xué)生為樣本進(jìn)行了一分鐘跳繩次數(shù)測試.根據(jù)測試結(jié)果,繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖.

組別

次數(shù)x

頻數(shù)(人數(shù))

1

80x100

6

2

100x120

8

3

120x140

a

4

140x160

18

5

160x180

6

請結(jié)合圖表完成下列問題:

1)表中的a   ;

2)請把頻數(shù)分布直方圖補(bǔ)充完整;

3)這個樣本數(shù)據(jù)的中位數(shù)落在第   組;

4)已知該校八年級共有學(xué)生800,請你估計(jì)一分鐘跳繩次數(shù)不低于120次的八年級學(xué)生大約多少名?

【答案】112;(2)見解析;(33;(4)跳繩次數(shù)不低于120次的八年級學(xué)生大約576名.

【解析】

1)由于八年級(1)班有50位學(xué)生,根據(jù)頻數(shù)分布表的數(shù)據(jù)即可求出a的值;
2)根據(jù)頻數(shù)分布表的數(shù)據(jù)即可把頻數(shù)分布直方圖補(bǔ)充完整;
3)由于八年級(1)班有50位學(xué)生,根據(jù)中位數(shù)的定義和頻數(shù)分布表即可確定這個樣本數(shù)據(jù)的中位數(shù)落在哪個小組;
4)首先根據(jù)頻數(shù)分布表可以求出一分鐘跳繩次數(shù)不低于120次的八年級(1)班學(xué)生人數(shù),然后除以50即可得到一分鐘跳繩次數(shù)不低于120次的百分比,最后利用一般估計(jì)總體的思想即可求出一分鐘跳繩次數(shù)不低于120次的八年級學(xué)生大約多少名.

1a506818612

2)如圖所示:

3)∵八年級(1)班有50位學(xué)生,

∴中位數(shù)應(yīng)該是第25、26兩個數(shù)的和的平均數(shù),

∴這個樣本數(shù)據(jù)的中位數(shù)落在第3組;

4)∵八年級(1)班學(xué)生人數(shù)為50人,而一分鐘跳繩次數(shù)不低于120次的有36人,

800×576人.

∴估計(jì)一分鐘跳繩次數(shù)不低于120次的八年級學(xué)生大約576名.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,A的圓心A的坐標(biāo)為(﹣1,0),半徑為1,點(diǎn)P為直線y=﹣x+3上的動點(diǎn),過點(diǎn)PA的切線,切點(diǎn)為Q,則切線長PQ的最小值是(  )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線yax2+bx+c的開口向上,與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的右側(cè)),點(diǎn)A的坐標(biāo)為(m0),且AB4

1)填空:點(diǎn)B的坐標(biāo)為   (用含m的代數(shù)式表示);

2)把射線AB繞點(diǎn)A按順時針方向旋轉(zhuǎn)135°與拋物線交于點(diǎn)P,△ABP的面積為8

①求拋物線的解析式(用含m的代數(shù)式表示);

②當(dāng)0x1,拋物線上的點(diǎn)到x軸距離的最大值為時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某興趣小組同學(xué)借助無人機(jī)航拍測量某公園內(nèi)一座古塔高度.如圖,無人機(jī)在距離地面168米的A處,測得該塔底端點(diǎn)B的俯角為40°,然后向古塔方向沿水平面飛行50秒到達(dá)點(diǎn)C處,此時測得該塔頂端點(diǎn)D的俯角為60°.已知無人機(jī)的飛行速度為3/秒,則這座古塔的高度約為_____米(參考計(jì)算:sin40°≈064cos40°≈077tan40°≈0.84.1.41. 1.73.結(jié)果精確到0.1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐

問題情境

在綜合與實(shí)踐課上,老師組織同學(xué)們以三角形紙片的旋轉(zhuǎn)為主題開展數(shù)學(xué)活動.如圖1,現(xiàn)有矩形紙片ABCD,AB4cmAD3cm.連接BD,將矩形ABCD沿BD剪開,得到ABDBCE.保持ABD位置不變,將BCE從圖1的位置開始,繞點(diǎn)B按逆時針方向旋轉(zhuǎn),旋轉(zhuǎn)角為α0°≤α360°).

操作發(fā)現(xiàn)

1)在BCE旋轉(zhuǎn)過程中,連接AEAC,則當(dāng)α時,的值是   ;

2)如圖2,將圖1中的BCE旋轉(zhuǎn),當(dāng)點(diǎn)E落在BA延長線上時停止旋轉(zhuǎn),求出此時的值;

實(shí)踐探究

3)如圖3,將圖2中的BCE繼續(xù)旋轉(zhuǎn),當(dāng)ACAE時停止旋轉(zhuǎn),直接寫出此時α的度數(shù),并求出AEC的面積;

4)將圖3中的BCE繼續(xù)旋轉(zhuǎn),則在某一時刻ACAE還能相等嗎?如果不能,則說明理由;如果能,請?jiān)趫D4中畫出此時的BCE,連接AC,AE,并直接寫出AEC的面積值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖拋物y=﹣x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)CCD兩點(diǎn)關(guān)于拋物線對稱軸對稱,連接BDy軸于點(diǎn)E,拋物線對稱軸交x軸于點(diǎn)F

1)點(diǎn)P為線段BD上方拋物線上的一點(diǎn),連接PD,PE.點(diǎn)My軸上一點(diǎn),過點(diǎn)MMNy軸交拋物線對稱軸于點(diǎn)N.當(dāng)△PDE面積最大時,求PM+MN+NF的最小值;

2)如圖2,在(1)中PM+MN+NF取得最小值時,將△PME繞點(diǎn)P順時針旋轉(zhuǎn)120°后得到△PME′,點(diǎn)GMN的中點(diǎn),連接MG交拋物線的對稱軸于點(diǎn)H,過點(diǎn)H作直線lPM,點(diǎn)R是直線l上一點(diǎn),在平面直角坐標(biāo)系中是否存在一點(diǎn)S,使以點(diǎn)M′,點(diǎn)G,點(diǎn)R,點(diǎn)S為頂點(diǎn)的四邊形是矩形?若存在,直接寫出點(diǎn)S的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】公園內(nèi)一涼亭,涼亭頂部是一圓錐形的頂蓋,立柱垂直于地面,在涼亭內(nèi)中央位置有一圓形石桌,某數(shù)學(xué)研究性學(xué)習(xí)小組,將此涼亭作為研究對象,并繪制截面示意圖,其中頂蓋母線ABAC的夾角為124°,涼亭頂蓋邊緣BC到地面的距離為2.4米,石桌的高度DE0.6米,經(jīng)觀測發(fā)現(xiàn):當(dāng)太陽光線與地面的夾角為42°時,恰好能夠照到石桌的中央E處(AE、D三點(diǎn)在一條直線上),請你求出圓錐形頂蓋母線AB的長度.(結(jié)果精確到0.1m)(參考數(shù)據(jù):sin62°≈0.88tan42°≈0.90

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知的直徑,過點(diǎn)作,交弦于點(diǎn),交于點(diǎn),且使.

1)求證:的切線;

2)若,求的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了美化環(huán)境,建設(shè)宜居城市,我市準(zhǔn)備在一個廣場上種植甲、乙兩種花卉,經(jīng)市場調(diào)查,甲種花卉的種植費(fèi)用y(元)與種植面積xm2)之間的函數(shù)關(guān)系如圖所示,乙種花卉的種植費(fèi)用為每平方米100元.

1)試求出yx的函數(shù)關(guān)系式;

2)廣場上甲、乙兩種花卉的種植面積共1200m2,若甲種花卉的種植面積不少于200m2,且不超過乙種花卉的種植面積的2倍.

①試求種植總費(fèi)用W元與種植面積xm2)之間的函數(shù)關(guān)系式;

②應(yīng)該怎樣分配甲、乙兩種花卉的種植面積才能使種植總費(fèi)用W最少?最少總費(fèi)用為多少元?

查看答案和解析>>

同步練習(xí)冊答案