【題目】如圖,在每個小正方形的邊長為1的網(wǎng)格中,△ABC的頂點A在格點上,B是小正方形邊的中點,經(jīng)過點A,B的圓的圓心在邊AC上.
(Ⅰ)弦AB的長等于_____;
(Ⅱ)請用無刻度的直尺,在如圖所示的網(wǎng)格中,找出經(jīng)過出點A,B的圓的圓心O,并簡要說明點O的位置是如何找到的(不要求證明)_____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是【 】
A.若甲組數(shù)據(jù)的方差,乙組數(shù)據(jù)的方差,則甲組數(shù)據(jù)比乙組數(shù)據(jù)大
B.從1,2,3,4,5,中隨機(jī)抽取一個數(shù),是偶數(shù)的可能性比較大
C.?dāng)?shù)據(jù)3,5,4,1,﹣2的中位數(shù)是3
D.若某種游戲活動的中獎率是30%,則參加這種活動10次必有3次中獎
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某青春黨支部在精準(zhǔn)扶貧活動中,給結(jié)對幫扶的貧困家庭贈送甲、乙兩種樹苗讓其栽種.已知乙種樹苗的價格比甲種樹苗貴10元,用480元購買乙種樹苗的棵數(shù)恰好與用360元購買甲種樹苗的棵數(shù)相同.
(1)求甲、乙兩種樹苗每棵的價格各是多少元?
(2)在實際幫扶中,他們決定再次購買甲、乙兩種樹苗共50棵,此時,甲種樹苗的售價比第一次購買時降低了10%,乙種樹苗的售價不變,如果再次購買兩種樹苗的總費用不超過1500元,那么他們最多可購買多少棵乙種樹苗?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形ABCD中,AD∥BC,AD=3,BC=7,∠B=60°,P為下底BC上一點(不與B、C重合),連結(jié)AP,過點P作PE交CD于E,使得∠APE=∠B
(1)求證:△ABP∽△PCE
(2)在底邊BC上是否存在一點P,使DE:EC=5:3?如果存在,求BP的長;如果不存在,請說明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,AD=6,將矩形ABCD繞點A逆時針旋轉(zhuǎn)得到矩形AEFG.
(1)如圖1,若在旋轉(zhuǎn)過程中,點E落在對角線AC上,AF,EF分別交DC于點M,N.
①求證:MA=MC;
②求MN的長;
(2)如圖2,在旋轉(zhuǎn)過程中,若直線AE經(jīng)過線段BG的中點P,連接BE,GE,求△BEG的面積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=(x1)2+n與x軸交于A,B兩點(A在B的左側(cè)),與y軸交于點C(0,3),點D與C關(guān)于拋物線的對稱軸對稱.
(1)求拋物線的解析式及點D的坐標(biāo);
(2)點P是拋物線上的一點,當(dāng)△ABP的面積是8,求出點P的坐標(biāo);
(3)過直線AD下方的拋物線上一點M作y軸的平行線,與直線AD交于點N,已知M點的橫坐標(biāo)是m,試用含m的式子表示MN的長及△ADM的面積S,并求當(dāng)MN的長最大時s的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD對角線交于點O,BE∥AC,AE∥BD,EO與AB交于點F.
(1)求證:四邊形AEBO是矩形.
(2)若CD=5,求OE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+3的對稱軸為直線x=1.若關(guān)于x的一元二次方程x2+bx+3﹣t=0(t為實數(shù))在﹣2<x<3的范圍內(nèi)有實數(shù)根,則t的取值范圍是( 。
A.12<t≤3B.12<t<4C.12<t≤4D.12<t<3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com