【題目】如圖,在平面直角坐標(biāo)系中,已知RtAOB的兩條直角邊OAOB分別在y軸和x軸上,并且OAOB的長(zhǎng)分別是方程x27x12=0的兩根(OAOB),動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始在線段AO上以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)O運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)Q從點(diǎn)B開(kāi)始在線段BA上以每秒2個(gè)單位長(zhǎng)度的速度向點(diǎn)A運(yùn)動(dòng),設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t.

1)求A、B兩點(diǎn)的坐標(biāo).

2)求當(dāng)t為何值時(shí),APQAOB相似?

【答案】1A0,3),B40);

2)當(dāng)t= t=時(shí),△APQ與△AOB相似.

【解析】

1)根據(jù)題意解方程即可得到AB兩點(diǎn)的坐標(biāo);

2)根據(jù)題意在RTAOB中,先求出AB,然后再把APAQ分別用t表示出來(lái),根據(jù)相似三角形的性質(zhì)求出t即可,應(yīng)注意分兩種情況討論.

1)解方程x2-7x+12=0,即(x-3)(x-4=0,解得x1=3,x2=4,

OAOB,

OA=3,OB=4

A0,3),B4,0);

2)在RTAOB中,OA=3,OB=4,

AB=5,

AP=t,QB=2t,AQ=5-2t.

當(dāng)△APQ∽△AOB時(shí),

解得t=;

當(dāng)△APQ∽△ABO時(shí),

,

解得t=.

綜上所述:當(dāng)t=t=時(shí),△APQ與△AOB相似.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線yx2+bx+c經(jīng)過(guò)點(diǎn)AB、C,已知A(﹣10),C0,﹣3).

1)求拋物線的解析式;

2)如圖1,拋物線頂點(diǎn)為E,EFx軸于F點(diǎn),Mm,0)是x軸上一動(dòng)點(diǎn),N是線段EF上一點(diǎn),若∠MNC90°,請(qǐng)指出實(shí)數(shù)m的變化范圍,并說(shuō)明理由.

3)如圖2,將拋物線平移,使其頂點(diǎn)E與原點(diǎn)O重合,直線ykx+2k0)與拋物線相交于點(diǎn)P、Q(點(diǎn)P在左邊),過(guò)點(diǎn)Px軸平行線交拋物線于點(diǎn)H,當(dāng)k發(fā)生改變時(shí),請(qǐng)說(shuō)明直線QH過(guò)定點(diǎn),并求定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,以正方形ABCDAB邊為直徑作半圓O,過(guò)點(diǎn)C作直線切半圓于點(diǎn)E,交AD邊于點(diǎn)F,則sinFCD=( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠B=60°,對(duì)角線AC平分角∠BAD,點(diǎn)P是△ABC內(nèi)一點(diǎn),連接PA、PB、PC,若PA=6,PB=8,PC=10,則菱形ABCD的面積等于_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點(diǎn)D,OAB上一點(diǎn),經(jīng)過(guò)點(diǎn)A,D⊙O分別交AB,AC于點(diǎn)E,F(xiàn),連接OFAD于點(diǎn)G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長(zhǎng);

(3)BE=8,sinB=,求DG的長(zhǎng),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1 是臺(tái)灣某品牌手工蛋卷的外包裝盒,其截面圖如圖 2 所示,盒子上方是一段圓弧(弧 MN .D,E 為手提帶的固定點(diǎn), DE 與弧MN 所在的圓相切,DE=2.手提帶自然下垂時(shí),最低點(diǎn)為C,且呈拋物線形,拋物線與弧MN 交于點(diǎn) F,G.CDE 是等腰直角三角形,且點(diǎn) CF 到盒子底部 AB 的距離分別為 1, ,則弧MN 所在的圓的半徑為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的盒子中裝有三張卡片,分別標(biāo)有數(shù)字12、3,這些卡片中除數(shù)字外其余的均相同.

小明從盒子中隨機(jī)抽取一張卡片記下數(shù)字后放回,洗勻后再隨機(jī)抽取一張卡片,用畫(huà)樹(shù)狀圖或列表的方法,求兩次抽取的卡片上數(shù)字之積為3的整數(shù)倍的概率;

小亮從盒子中隨機(jī)抽取一張卡片,記下數(shù)字后不放回,再?gòu)暮凶又须S機(jī)抽取一張卡,直接寫(xiě)出兩次抽取的卡片上的數(shù)字之積為3的整數(shù)倍的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】從甲地到乙地有兩條公路,一條是全長(zhǎng)600km的普通公路,另一條是全長(zhǎng)480km的高速公路,某客車(chē)在高速公路上行駛的平均速度比在普通公路上快45/ ,由高速公路從甲地到乙地所需的時(shí)間是由普通公路從甲地到乙地所需時(shí)間的一半,求該客車(chē)由高速公路從甲地到乙地所需的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線AC與⊙O相交于點(diǎn)C,直線AO與⊙O相交于DB兩點(diǎn).已知∠ACD=B

1)求證:AC是⊙O的切線;

2)若AC=6,AD=4,求⊙O的半徑;

查看答案和解析>>

同步練習(xí)冊(cè)答案