精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在平面直角坐標系中,ABC的頂點坐標分別為A(-5,1),B(-1,1),C(-4,3).

1)若A1B1C1ABC關于y軸對稱,點ABC的對應點分別為A1,B1C1,請畫出A1B1C1并寫出A1B1C1的坐標;

2)若點P為平面內不與C重合的一點,PABABC全等,請寫出點P的坐標.

【答案】1)圖見解析,A151),B11,1),C143);(2)(-23),(-2,-1),(-4-1

【解析】

1)直接利用關于y軸對稱點的性質畫出相對應的A1B1C1并且寫出對應點坐標即可;

2)直接利用全等三角形性質找出符合題意得點P位置,從而寫出坐標即可.

1)如圖所示:

A1坐標為(5,1),B1坐標為(1,1),C1坐標為(43);

(2)P點位置如(1)圖中所示,

P對應坐標為:(-2,3),(-2,-1),(-4,-1).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,連接AC、BD交于點O,CE平分∠ACD交BD于點E,

(1)求DE的長;

(2)過點EF作EF⊥CE,交AB于點F,求BF的長;

(3)過點E作EG⊥CE,交CD于點G,求DG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列方程:①;②;③;④;⑤;⑥,其中是二元一次方程的是(

A.B.①④C.①③D.①②④⑥

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一水庫大壩的橫斷面為梯形ABCD,壩頂寬6米,壩高10米,斜坡AB的坡度i1=1:3,斜坡CD的坡度i2=1:1.

(1)求斜坡AB的長(結果保留根號);

(2)求壩底AD的長度;

(3)求斜坡CD的坡角α.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知ABC中,AB=4,BC=5,AC的長是一元二次方程x2﹣15x+54=0的一個根.

(1)求AC的長;

(2)在AC上找一點D,連接BD,使△ABD∽△ACB;

(3)以AC為一邊作一個三角形ACM,求出sinAMC的值.(所作三角形自己設計)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,點C是⊙O中直徑AB上的一個動點,過點CCDAB交⊙O于點D,點M是直徑AB上一固定點,作射線DM交⊙O于點N.已知AB=6cm,AM=2cm,設線段AC的長度為xcm,線段MN的長度為ycm.

小東根據學習函數的經驗,對函數y隨自變量的變化而變化的規(guī)律進行了探索.

下面是小東的探究過程,請補充完整:

(1)通過取點、畫圖、測量,得到了與y的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

4

3.3

2.8

2.5

   

2.1

2

(說明:補全表格時相關數值保留一位小數)

(2)在圖2中建立平面直角坐標系,描出以補全后的表中各對對應值為坐標的點,畫出該函數的圖象

(3)結合畫出的函數圖象,解決問題:當AC=MN時,x的取值約為   cm.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y=﹣x2+bx+cc0)的圖象與x軸交于A、B兩點(點A在點B的左側),與y軸交于點C,且OB=OC=3,頂點為M

1)求二次函數的解析式;

2)點P為線段BM上的一個動點,過點Px軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關于m的函數解析式,并寫出m的取值范圍;

3)探索:線段BM上是否存在點N,使NMC為等腰三角形?如果存在,求出點N的坐標;如果不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,AB=10AC=8,BC=6,以邊AB的中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最小值是_______.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】直線軸分別交于點A和點BMOB上一點,若將△ABM沿AM折疊,點B恰好落在軸上的點B′處,試求出直線AM的解析式.

查看答案和解析>>

同步練習冊答案