【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線(xiàn)y=ax2+bx+4與x軸的正半軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,點(diǎn)C在線(xiàn)段OA上,點(diǎn)D在此拋物線(xiàn)上,CD⊥x軸,且∠DCB=∠DAB,AB與CD相交于點(diǎn)E.

(1)求證:△BDE∽△CAE;
(2)已知OC=2,tan∠DAC=3,求此拋物線(xiàn)的表達(dá)式.

【答案】
(1)

證明:∵∠DCB=∠DAB,∠BEC=∠DEA,

∴△BEC∽△DEA,

= ,又∠BED=∠CEA,

∴△BDE∽△CAE;


(2)

解:∵拋物線(xiàn)y=ax2+bx+4與y軸相交于點(diǎn)B,

∴點(diǎn)B的坐標(biāo)為(0,4),即OB=4,

∵tan∠DAC=3,

=3,

設(shè)AC=m,則DC=3m,OA=m+2,

則點(diǎn)A的坐標(biāo)為(m+2,0),點(diǎn)D的坐標(biāo)為(2,3m),

∵△BDE∽△CAE,

∴∠DBA=∠DCA=90°,

∴BD2+BC2=CD2,即22+(3m﹣4)2+(m+2)2+42=m2+(3m)2,

解得,m=2,

則點(diǎn)A的坐標(biāo)為(4,0),點(diǎn)D的坐標(biāo)為(2,6),

解得, ,

∴拋物線(xiàn)的表達(dá)式為y=﹣x2+3x+4


【解析】(1)根據(jù)相似三角形的判定定理得到△BEC∽△DEA,根據(jù)相似三角形的性質(zhì)定理得到 = ,根據(jù)相似三角形的判定定理證明即可;(2)設(shè)AC=m,根據(jù)正切的定義得到DC=3m,根據(jù)相似三角形的性質(zhì)得到∠DBA=∠DCA=90°,根據(jù)勾股定理列出算式,求出m的值,利用待定系數(shù)法求出拋物線(xiàn)的解析式.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的概念和二次函數(shù)的圖象的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握一般地,自變量x和因變量y之間存在如下關(guān)系:一般式:y=ax2+bx+c(a≠0,a、b、c為常數(shù)),則稱(chēng)y為x的二次函數(shù);二次函數(shù)圖像關(guān)鍵點(diǎn):1、開(kāi)口方向2、對(duì)稱(chēng)軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)四棱錐P﹣ABCD的底面不是平行四邊形,用平面 α去截此四棱錐,使得截面四邊形是平行四邊形,則這樣的平面α(
A.不存在
B.只有1個(gè)
C.恰有4個(gè)
D.有無(wú)數(shù)多個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=2,邊AB的垂直平分線(xiàn)交AC邊于點(diǎn)D,交AB邊于點(diǎn)E,聯(lián)結(jié)DB,那么tan∠DBC的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC是邊長(zhǎng)為2的等邊三角形,點(diǎn)D在邊BC上,將△ABD沿著直線(xiàn)AD翻折,點(diǎn)B落在點(diǎn)B1處,如果B1D⊥AC,那么BD=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知在梯形ABCD中,AD∥BC,AB=AD=5,tan∠DBC= .點(diǎn)E為線(xiàn)段BD上任意一點(diǎn)(點(diǎn)E與點(diǎn)B,D不重合),過(guò)點(diǎn)E作EF∥CD,與BC相交于點(diǎn)F,連接CE.設(shè)BE=x,y=

(1)求BD的長(zhǎng);
(2)如果BC=BD,當(dāng)△DCE是等腰三角形時(shí),求x的值;
(3)如果BC=10,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在△ABC中,AB=AC,過(guò)點(diǎn)A作AD⊥BC,垂足為點(diǎn)D,延長(zhǎng)AD至點(diǎn)E,使DE= AD,過(guò)點(diǎn)A作AF∥BC,交EC的延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)設(shè) = , = ,用 的線(xiàn)性組合表示 ;
(2)求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,E是CD的延長(zhǎng)線(xiàn)上一點(diǎn),BE與AD交于點(diǎn)F,若ED:DC=2:3,△DEF的面積為8,則平行四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】問(wèn)題背景:數(shù)學(xué)活動(dòng)課上老師出示問(wèn)題,如圖1,有邊長(zhǎng)為a的正方形紙片一張,三邊長(zhǎng)分別為a、b、c的全等直角三角形紙片兩張,且b .請(qǐng)你用這三張紙片拼出一個(gè)圖案,并將這個(gè)圖案的某部分進(jìn)行旋轉(zhuǎn)或平移變換之后,提出一個(gè)問(wèn)題(可以添加其他條件,例如可以給出a、b的值等等).
解決問(wèn)題:

下面是兩個(gè)學(xué)習(xí)小組拼出圖案后提出的問(wèn)題,請(qǐng)你解決他們提出的問(wèn)題.
(1)“愛(ài)心”小組提出的問(wèn)題是:如圖2,將△DFC繞點(diǎn)F逆時(shí)針旋轉(zhuǎn),使點(diǎn)D恰好落在AD邊上的點(diǎn)D′處,猜想此時(shí)四邊形AEFD′是什么特殊四邊形,并加以證明;
(2)“希望”小組提出的問(wèn)題是:如圖3,點(diǎn)M為BE中點(diǎn),將△DCF向左平移至DF恰好過(guò)點(diǎn)M時(shí)停止,且補(bǔ)充條件a=6,b=2,求△DCF平移的距離.
自主創(chuàng)新:
(3)請(qǐng)你仿照上述小組的同學(xué),在下面圖4的空白處用實(shí)線(xiàn)畫(huà)出你拼出的圖案,用虛線(xiàn)畫(huà)出變換圖,并在橫線(xiàn)處寫(xiě)出你提出的問(wèn)題.(不必解答)
你提出的問(wèn)題:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,天星山山腳下西端A處與東端B處相距800(1+ )米,小軍和小明同時(shí)分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為 米/秒.若小明與小軍同時(shí)到達(dá)山頂C處,則小明的行走速度是多少?

查看答案和解析>>

同步練習(xí)冊(cè)答案