【題目】如圖,AB是⊙O的直徑,點(diǎn)C、D在圓上,,過點(diǎn)CCEADAD的延長線于點(diǎn)E

1)求證:CE是⊙O的切線;

2)已知BC3,AC4,求CE的長.

【答案】(1)見解析 (2)

【解析】

1)連接OC,OA=OC,則∠OCA=OAC,再由已知條件,可得∠OCE=90°;
2)由CE是⊙O的切線,得∠DCE=CAE=CAB,從而求得CDE∽△ABC,ACE∽△ABC,根據(jù)相似三角形對應(yīng)邊成比例即可求得.

1)連接OC,
OA=OC,
∴∠OCA=OAC,
∵弧BC=CD,
DC=BC,
∴∠BAC=CAD,
∴∠OCA=CAD,
OCAE,
∵∠E=90°
OCCE,
CE是⊙O的切線;
2)∵CE是⊙O的切線,
∴∠DCE=CAE=CAB
AB是⊙O的直徑,
∴∠ACB=90°
∴∠ACB=E,
∴△CDE∽△ABC,ACE∽△ABC,
,
BC=3,AC=4,
AB=5,CD=3,
,
CE=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的盒子里,裝有四個(gè)分別標(biāo)有數(shù)字,,,的小球,它們的形狀、大小、質(zhì)地等完全相同.小強(qiáng)先從盒子里隨機(jī)取出一個(gè)小球,記下數(shù)字為x;放回盒子搖勻后,再由小華隨機(jī)取出一個(gè)小球,記下數(shù)字為y.

1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;

2)求小強(qiáng)、小華各取一次小球所確定的點(diǎn)(xy)落在一次函數(shù)的圖象上的概率;

3)求小強(qiáng)、小華各取一次小球所確定的數(shù)xy滿足的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若一個(gè)等腰三角形的三邊長均滿足方程x2-6x+8=0,則此三角形的周長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,以斜邊AB上的中線CD為直徑作⊙O,與ACBC分別交于點(diǎn)M、N,與AB的另一個(gè)交點(diǎn)為E.過點(diǎn)NNFAB,垂足為F

1)求證:NF是⊙O的切線;

2)若NF2DF1,求弦ED的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,BD為一條對角線,AD∥BC,AD=2BC,∠ABD=90°,E為AD的中點(diǎn),連接BE.

(1)求證:四邊形BCDE為菱形;

(2)連接AC,若AC平分∠BAD,AB=2,求菱形BCDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,OC⊙O的半徑,點(diǎn)D是半圓AB上一動(dòng)點(diǎn)(不與AB重合),連結(jié)DC交直徑AB與點(diǎn)E,∠AOC=60°,則∠AED的范圍為(

A.0°< ∠AED <180°B.30°< ∠AED <120°

C.60°< ∠AED <120°D.60°< ∠AED <150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=BC,∠ABC=90°,DAB上一動(dòng)點(diǎn),連接CD,以CD為直徑的⊙MAC于點(diǎn)E,連接BM并延長交AC于點(diǎn)F,交⊙M于點(diǎn)G,連接BE

1)求證:點(diǎn)B⊙M上.

2)當(dāng)點(diǎn)D移動(dòng)到使CD⊥BE時(shí),求BCBD的值.

3)當(dāng)點(diǎn)D到移動(dòng)到使時(shí),求證:AE+CF=EF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=x2+bx+cx軸交于點(diǎn)A(﹣2,0

1)填空:c=   ;(用含b的式子表示)

2b4

①求證:拋物線與x軸有兩個(gè)交點(diǎn);

②設(shè)拋物線與x軸的另一個(gè)交點(diǎn)為B,當(dāng)線段AB上恰有5個(gè)整點(diǎn)(橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)),求b的取值范圍;

3)平移拋物線,使其頂點(diǎn)P落在直線y=3x2上,設(shè)拋物線與直線的另一個(gè)交點(diǎn)為Q,C在該直線下方的拋物線上,求△CPQ面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,直線y=x-3x軸于點(diǎn)B,交y軸于點(diǎn)C,拋物線經(jīng)過點(diǎn)A(-1,0)B,C三點(diǎn),點(diǎn)Fy軸負(fù)半軸上,OF=OA.

(1)求拋物線的解析式;

(2)在第一象限的拋物線上存在一點(diǎn)P,滿足SABC=SPBC,請求出點(diǎn)P的坐標(biāo);

(3)點(diǎn)D是直線BC的下方的拋物線上的一個(gè)動(dòng)點(diǎn),過D點(diǎn)作DEy軸,交直線BC于點(diǎn)E,①當(dāng)四邊形CDEF為平行四邊形時(shí),求D點(diǎn)的坐標(biāo);

②是否存在點(diǎn)D,使CEDF互相垂直平分?若存在,請求出點(diǎn)D的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案