【題目】已知:如圖,四邊形ABCD是平行四邊形,CE∥BD交AD的延長線于點E,CE=AC.
(1)求證:四邊形ABCD是矩形;
(2)若AB=4,AD=3,求四邊形BCED的周長.
【答案】(1)詳見解析;(2)16.
【解析】
(1)根據(jù)已知條件推知四邊形BCED是平行四邊形,則對邊相等:CE=BD,依據(jù)等量代換得到對角線AC=BD,則平行四邊形ABCD是矩形;
(2)通過勾股定理求得BD的長度,再利用四邊形BCED是平行四邊形列式計算即可得解.
(1)證明:∵四邊形ABCD是平行四邊形,
∴AE∥BC.
∵CE∥BD,
∴四邊形BCED是平行四邊形.
∴CE=BD.
∵CE=AC,
∴AC=BD.
∴□ABCD是矩形.
(2)解:∵□ABCD是矩形,AB=4,AD=3,
∴∠DAB=90°,BC=AD=3,
∴.
∵四邊形BCED是平行四邊形,
∴四邊形BCED的周長為2(BC+BD)=2×(3+5)=16.
故答案為(1)詳見解析;(2)16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD是邊BC上的中線,過點A作AE∥BC,過點D作DE∥AB,DE與AC、AE分別交于點O、點E,連接EC.
(1)求證:AD=EC;
(2)當∠BAC=Rt∠時,求證:四邊形ADCE是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】命題:如果兩條平行線被第三條直線所截,那么一組內(nèi)錯角的平分線互相平行,如圖為符合該命題的示意圖.
(1)請你根據(jù)圖形把該命題用幾何符號語言補充完整,己知:直線、被第三條直線所截,且,平分,平分______,則____________
(2)判斷該命題的真假,若是假命題,請舉例說明:若是真命題,請證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)經(jīng)過點A(﹣1,0),B(,0),且與y軸相交于點C.
(1)求這條拋物線的表達式;
(2)求∠ACB的度數(shù);
(3)設(shè)點D是所求拋物線第一象限上一點,且在對稱軸的右側(cè),點E在線段AC上,且DE⊥AC,當△DCE與△AOC相似時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運動,到點C停止運動.過點E作 EF∥BD,EF與邊AD(或邊CD)交于點F,EF的長度y(cm)與點E的運動時間x(秒)的函數(shù)圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 要比較a與b的大小,可以先求a與b的差,再看這個差是正數(shù)、負數(shù)還是零.由此可見,要判斷兩個式子值的大小,只要考慮它們的差就可以了.
已知A=16a2+a+15 , B=4a2+a+7 , C=a2+a+4.
請你按照上述文字提供的信息:(1)試比較A與2B的大小; (2)試比較2B與3C的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,點A的坐標為(m,n),若點A′(m,n′)的縱坐標滿足n′=,則稱點A′是點A的“絕對點”.
(1)點(3,2)的“絕對點”的坐標為 .
(2)點P是函數(shù)y=4x-1的圖象上的一點,點P′是點P的“絕對點”.若點P與點P′重合,求點P的坐標.
(3)點Q(a,b)的“絕對點”Q′是函數(shù)y=2x2的圖象上的一點.當0≤a≤2 時,求線段QQ′的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,△ABC的三個頂點的位置如圖所示,點A′的坐標是(﹣2,2),現(xiàn)將△ABC平移,使點A變換為點A′,點B′、C′分別是B、C的對應(yīng)點.
(1)請畫出平移后的△A′B′C′(不寫畫法);
(2)并直接寫出點B′、C′的坐標:B′( )、C′( );
(3)若△ABC內(nèi)部一點P的坐標為(a,b),則點P的對應(yīng)點P′的坐標是( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
【答案】(1)b=﹣2a,頂點D的坐標為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點坐標代入拋物線解析式可得到b與a的關(guān)系,可用a表示出拋物線解析式,化為頂點式可求得其頂點D的坐標;
(2)把點代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關(guān)于x的一元二次方程,可求得另一交點N的坐標,根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當GH與拋物線只有一個公共點時,t的值,再確定當線段一個端點在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點時t的取值范圍.
試題解析:(1)∵拋物線有一個公共點M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點D的坐標為
(2)∵直線y=2x+m經(jīng)過點M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點坐標為
∵a<b,即a<2a,
∴a<0,
如圖1,設(shè)拋物線對稱軸交直線于點E,
∵拋物線對稱軸為
設(shè)△DMN的面積為S,
(3)當a=1時,
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點G、H關(guān)于原點對稱,
∴H(1,2),
設(shè)直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當點H平移后落在拋物線上時,坐標為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當線段GH與拋物線有兩個不同的公共點,t的取值范圍是
【題型】解答題
【結(jié)束】
24
【題目】在△ABC中,AB=AC,點D是直線BC上的一點(不與B,C重合),以AD為一邊在AD的右側(cè)作△ADE,使AD=AE,∠DAE=∠BAC,連接CE,設(shè)∠BAC=α,∠BCE=β.
(1)如圖①,當點D在線段BC上,如果α=60°,β=120°;
如圖②,當點D在線段BC上,如果α=90°,β=90°
如圖③,當點D在線段BC上,如果α,β之間有什么樣的關(guān)系?請直接寫出.
(2)如圖④,當點D在射線BC上,(1)中結(jié)論是否成立?請說明理由.
(3)如圖⑤,當點D在射線CB上,且在線段BC外,(1)中結(jié)論是否成立?若不成立,請直接寫出你認為正確的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com