【題目】如圖,中,,的平分線與的垂直平分線交于點,將沿上,上)折疊,點與點恰好重合,則______.

【答案】

【解析】

連接OB、OC,根據(jù)角平分線的定義求出∠BAO=28°,利用等腰三角形兩底角相等求出∠ABC,根據(jù)線段垂直平分線上的點到兩端點的距離相等可得OA=OB,再根據(jù)等邊對等角求出∠OBA,然后求出∠OBC,再根據(jù)等腰三角形的性質(zhì)可得OB=OC,然后求出∠OCE,根據(jù)翻折變換的性質(zhì)可得OE=CE,然后利用等腰三角形兩底角相等列式計算即可得解.

如圖,連接OB、OC,


OA平分∠BAC,∠BAC=56°,
∴∠BAO=BAC=×56°=28°
AB=AC,∠BAC=56°,
∴∠ABC=180°-BAC=×180°-56°=62°,
OD垂直平分AB
OA=OB,
∴∠OBA=BAO=28°,
∴∠OBC=ABC-OBA=62°-28°=34°,
由等腰三角形的性質(zhì),OB=OC,
∴∠OCE=OBC=34°,
∵∠C沿EFEBC上,FAC上)折疊,點C與點O恰好重合,
OE=CE
∴∠OEC=180°-2×34°=112°
故答案為:112

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線軸、軸分別交于兩點,是以為圓心,1為半徑的圓上一動點,連接,則面積的最大值是( )

A. 8 B. 12

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程(x–2)(x–3)=m有實數(shù)根x1x2,且x1<x2,則下列結(jié)論中錯誤的是

A. 當(dāng)m=0時,x1=2,x2=3

B. m>–

C. 當(dāng)m>0時,2<x1<x2<3

D. 二次函數(shù)y=(xx1)(xx2)+m的圖象與x軸交點的坐標(biāo)為(2,0)和(3,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,平分交邊于點,分別是,上的點,連結(jié),.的最小值是__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,為等邊三角形,點坐標(biāo)為,點軸上位于點上方的一個動點,以為邊向的右側(cè)作等邊,連接,并延長軸于點.

(1)求證:;

(2)當(dāng)點在運動時,是否平分?請說明理由;

(3)當(dāng)點在運動時,在軸上是否存在點,使得為等腰三角形?若存在,請求出點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:∠MON=30°,A1A2、A3…在射線ON,B1、B2B3…在射線OM,A1B1A2、△A2B2A3、△A3B3A4…均為等邊三角形,OA1=1,則△A6B6A7的邊長為( )

A. 16B. 32C. 64D. 128

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,ACBC,∠ACB90°,CEAB相交于點D,且BECE,AFCE,垂足分別為點E、F

1)若AF5,BE2,求EF的長.

2)如圖2,取AB中點G,連接FCEC,請判斷△GEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y2x+bx軸于點A(﹣2,0),交y軸于點B,直線y2AB于點C,交y軸于點D,P是直線y2上一動點,設(shè)Pm2).

1)求直線AB的解析式和點B,點C的坐標(biāo);

2)直接寫出m為何值時,ABP是等腰三角形;

3)求ABP的面積(用含m的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,AB=4,點E在對角線AC上,連接BE、DE,

1如圖1,作EMABAB于點M當(dāng)AE=時,求BE的長;

2如圖2,作EGBECD于點G,求證:BE=EG;

3如圖3,作EFBCBC于點F,設(shè)BF=x,BEF的面積為y當(dāng)x取何值時,y取得最大值,最大值是多少?當(dāng)BEF的面積取得最大值時,在直線EF取點P,連接BP、PC,使得∠BPC=45°,求EP的長度

查看答案和解析>>

同步練習(xí)冊答案