【題目】下列哪組條件能夠判別四邊形ABCD是平行四邊形?( 。
A. AB∥CD,AD=BC B. AB=CD,AD=BC
C. ∠A=∠B,∠C=∠D D. AB=AD,CB=CD
科目:初中數(shù)學 來源: 題型:
【題目】用小立方體搭成一個幾何體,從正面和上面看到該幾何體的形狀圖如圖所示,搭建這樣的幾何體最多要幾個小立方體?最少要幾個小立方體?并畫出最多和最少時從左面看到的形狀圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某校20周年校慶時,需要在草場上利用氣球懸掛宣傳條幅,EF為旗桿,氣球從A處起飛,幾分鐘后便飛達C處,此時,在AF延長線上的點B處測得氣球和旗桿EF的頂點E在同一直線上.
(1)已知旗桿高為12米,若在點B處測得旗桿頂點E的仰角為30°,A處測得點E的仰角為45°,試求AB的長(結果保留根號);
(2)在(1)的條件下,若∠BCA=45°,繩子在空中視為一條線段,試求繩子AC的長(結果保留根號)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC中,∠BAC=90°,AB=AC=2,BC=.點D從B點開始運動到C點結束(點D和B、C均不重合),DE交AC于E,∠ADE=45°,當△ADE是等腰三角形時,AE的長度為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE= AC,連接CE,OE,連接AE,交OD于點F.若AB=2,∠ABC=60°,則AE的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在□ABCD的形外分別作等腰直角△ABF和等腰直角△ADE,∠FAB=∠EAD=90°,
連結AC、EF.在圖中找一個與△FAE全等的三角形,并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小區(qū)準備新建50個停車位,用以解決小區(qū)停車難的問題.已知新建1個地上停車位和1個地下停車位共需0.6萬元;新建3個地上停車位和2個地下停車位共需1.3萬元.
(1)該小區(qū)新建1個地上停車位和1個地下停車位各需多少萬元?
(2)該小區(qū)的物業(yè)部門預計投資金額超過12萬元而不超過13萬元,那么共有幾種建造停車位的方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,P是BC中點,∠EPF=90°,給出四個結論:①∠B=∠BAP;②AE=CF;③PE=PF;④S四邊形AEPF=S△ABC.其中成立的有_______
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com