【題目】綜合與實(shí)踐:
操作與發(fā)現(xiàn):
如圖,已知A,B兩點(diǎn)在直線CD的同一側(cè),線段AE,BF均是直線CD的垂線段,且BF在AE的右邊,AE=2BF,將BF沿直線CD向右平移,在平移過(guò)程中,始終保持∠ABP=90°不變,BP邊與直線CD相交于點(diǎn)P,點(diǎn)G是AE的中點(diǎn),連接BG.
探索與證明:求證:
(1)四邊形EFBG是矩形;
(2)△ABG∽△PBF.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析.
【解析】
(1)先通過(guò)等量代換得出GE=BF,然后由AE⊥CD,BF⊥CD得出AE∥BF,從而得到四邊形EFBG是平行四邊形,最后利用BF⊥CD,則可證明平行四邊形EFBG是矩形;
(2)先通過(guò)矩形的性質(zhì)得出∠AGB=∠GBF=∠BFE=90°,然后通過(guò)等量代換得出∠ABG=∠PBF,再加上∠AGB=∠PFB=90°即可證明△ABG∽△PBF.
(1)證明:∵AE⊥CD,BF⊥CD,
∴AE∥BF,
∵AE=2BF,
∴BF=AE,
∵點(diǎn)G是AE的中點(diǎn),
∴GE=AE,
∴GE=BF,又AE∥BF,
∴四邊形EFBG是平行四邊形,
∵BF⊥CD,
∴平行四邊形EFBG是矩形;
(2)∵四邊形EFBG是矩形,
∴∠AGB=∠GBF=∠BFE=90°,
∵∠ABP=90°,
∴∠ABP﹣∠GBP=∠GBF﹣∠GBP,
即∠ABG=∠PBF,
∵∠ABG=∠PBF,∠AGB=∠PFB=90°,
∴△ABG∽△PBF.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③方程ax2+bx+c=0的兩根分別為-3和1;④a-2b+c≥0,其中正確的命題是( 。
A.①②③B.①④C.①③D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)D是Rt△ABC斜邊AB的中點(diǎn),過(guò)點(diǎn)B、C分別作BE∥CD,CE∥BD.
(1)若∠A=60°,AC=,求CD的長(zhǎng);
(2)求證:BC⊥DE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象分別交x軸、y軸于A、B兩點(diǎn),與反比例函數(shù)的圖象交于C、D兩點(diǎn).已知點(diǎn)C的坐標(biāo)是(6,-1),D(n,3).
(1)求m的值和點(diǎn)D的坐標(biāo).
(2)求的值.
(3)根據(jù)圖象直接寫出:當(dāng)x為何值時(shí),一次函數(shù)的值大于反比例函數(shù)的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商家為了讓手機(jī)銷量更好,更能吸引大家來(lái)購(gòu)買,商家實(shí)施一定程度的讓利促銷活動(dòng),手機(jī)的銷量分別出現(xiàn)不同程度的增長(zhǎng),A品牌手機(jī)的銷量每月都比上個(gè)月多賣100臺(tái),而B品牌的手機(jī)的銷量每月均按照一個(gè)相同的百分?jǐn)?shù)增長(zhǎng),十月份A品牌手機(jī)的銷量比B品牌的手機(jī)銷量少360臺(tái),十一月份兩種手機(jī)的總銷量比十月份兩種手機(jī)的總銷量多200臺(tái),十二月份兩種手機(jī)的總銷量比十月份兩種手機(jī)的總銷量多25%,
(1)求B品牌的手機(jī)十一份的銷量比十月份的銷量多多少臺(tái)?
(2)求B品牌的手機(jī)十月份的銷量是多少臺(tái)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程mx2-2x+1=0.
(1)若方程有兩個(gè)實(shí)數(shù)根,求m的取值范圍;
(2)若方程的兩個(gè)實(shí)數(shù)根為x1,x2,且x1x2-x1-x2=,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,BC>AB,E是AD上一點(diǎn),△ABE沿BE折疊,點(diǎn)A恰好落在線段CE的點(diǎn)F處,連結(jié)BF.
(1)求證:BC=CE;
(2)設(shè)=k.
①若k=,求sin∠DCE的值;
②設(shè)=m,試求m與k滿足的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)最新公布的福建高考改革方案,從2021年開(kāi)始我省高考將實(shí)行“3+1+2”模式.“3“指的是語(yǔ)文、數(shù)學(xué)、外語(yǔ)三科為必考科目,不分文理科,由全國(guó)統(tǒng)一命題;“1+2“為高中學(xué)業(yè)水平選擇性考試,其中“1“為在物理、歷史2科中選擇1科;“2“為在思想政治、地理、化學(xué)、生物4科中選擇2科.現(xiàn)對(duì)該校某班選科情況進(jìn)行調(diào)查,對(duì)調(diào)查結(jié)果進(jìn)行了分析統(tǒng)計(jì),并制作了兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)以上信息,完成下列問(wèn)題:
(1)該班共有學(xué)生 人;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該班某同學(xué)物理成績(jī)特別優(yōu)異,已經(jīng)從物理、歷史學(xué)科中選定物理,還需從余下思想政治、地理、化學(xué)、生物(分別記為A、B、C、D)4門科目中任意選擇兩門,請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求出該同學(xué)恰好選中化學(xué)、生物兩科的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:若函數(shù)與軸的交點(diǎn)的橫坐標(biāo)為,,與軸交點(diǎn)的縱坐標(biāo)為,若,中至少存在一個(gè)值,滿足(或),則稱該函數(shù)為友好函數(shù).如圖,函數(shù)與軸的一個(gè)交點(diǎn)的橫坐標(biāo)為-3,與軸交點(diǎn)的縱坐標(biāo)為-3,滿足,稱為友好函數(shù).
(1)判斷是否為友好函數(shù),并說(shuō)明理由;
(2)請(qǐng)?zhí)骄坑押煤瘮?shù)表達(dá)式中的與之間的關(guān)系;
(3)若是友好函數(shù),且為銳角,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com