【題目】如圖,在中,為直徑,,點D為弦的中點,點E為上任意一點,則的大小可能是( )

A.B.C.D.

【答案】C

【解析】

連接ODOE,先求出∠COD=40°,∠BOC=100°,設(shè)∠BOE=x,則∠COE=100°-x,∠DOE=100°-x+40°;然后運用等腰三角形的性質(zhì)分別求得∠OED∠COE,最后根據(jù)線段的和差即可解答.

解:連接OD、OE

OC=OA

OAC是等腰三角形

,點D為弦的中點

∴∠DOC=40°,∠BOC=100°

設(shè)∠BOE=x,則∠COE=100°-x,∠DOE=100°-x+40°

OC=OE,∠COE=100°-x

∴∠OEC=

OD<OE,∠DOE=100°-x+40°=140°-x

∴∠OED<

∴∠CED>∠OEC-∠OED==20°

又∵∠CED<∠ABC=40°,

故答案為C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)圖象與反比例函數(shù)的圖象交于點、,與軸交于點

1)求一次函數(shù)與反比例函數(shù)的解析式.

2)求點坐標.

3)平面上的點與點、構(gòu)成平行四邊形,請直接寫出滿足條件的點坐標______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形中,分別為邊,的中點,,分別交于點M,N.已知,則的長為_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系xOy中,At0),Bt+4,0),線段AB的中點為C,若平面內(nèi)存在一點P使得∠APC或者∠BPC為直角(點P不與A,B,C重合),則稱P為線段AB的直角點.

1)當t=0時,

①在點P10),P2),P3,﹣)中,線段AB的直角點是   

②直線y=x+b上存在四個線段AB的直角點,直接寫出b取值范圍;

2)直線y=x+1xy軸交于點M,N.若線段MN上只存在兩個線段AB的直角點,直接寫出t取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,觀測站C發(fā)現(xiàn)在它的正西方向,有一艘漁船B出現(xiàn)險情,需救援,當即上報救援中心A,測得CA的南偏東67方向,距A50海里,而BA的南偏東30方向,求漁船B與救援中心A的距離AB,漁船B與觀測站C的距離BC.(結(jié)果精確到0.1海里)(參考數(shù)據(jù):sin37=0.6,cos37=0.8tan37=,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的半徑為,的半徑為,以為圓心,以的長為半徑畫弧,再以線段的中點P為圓心,以的長為半徑畫弧,兩弧交于點A,連接,于點B,過點B的平行線于點C

1)求證:的切線;

2)若,,,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB的直徑,點C上一點,連接AC、BC,直線MN過點C,滿足

1)如圖①,求證:直線MN的切線;

2)如圖②,點D在線段BC上,過點D于點H,直線DH于點E、F,連接AF并延長交直線MN于點G,連接CE,且,若的半徑為1,,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們定義:將一個圖形繞某一定點按某一方向旋轉(zhuǎn)一定的角度(旋轉(zhuǎn)角度小于等于360°),并且各邊長伸縮相同的倍數(shù)得到另一個圖形,如圖①,這種變換叫做旋轉(zhuǎn)伸縮變換,其中定點叫做旋轉(zhuǎn)中心,對應(yīng)邊的比叫做伸縮比.

(特例感知)

1)如圖①,是等邊三角形,繞點A作旋轉(zhuǎn)伸縮變換得,連接,

①若,則旋轉(zhuǎn)角的度數(shù)為________;

②若伸縮比為21,則線段的數(shù)量關(guān)系為________;

③直線與直線所夾的銳角為________;

(探究證明)

2)如圖②,在中,,將繞點A逆時針方向旋轉(zhuǎn)一定的角度,作旋轉(zhuǎn)伸縮變換得到,連接、,直線與直線相交于點P,請判斷的值及的度數(shù),并說明理由;

(問題解決)

3)在(2)的條件下,若,求當點與點P重合時,的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,CBA延長線上一點,CD是⊙O的切線,D為切點,OFAD于點E,交CD于點F

1)求證:∠ADC=AOF;

2)若sinC=,BD=8,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案