19.如圖,在△ABC中,OB,OC分別是∠ABC,∠ACB的平分線,OM∥BC,分別交AB,AC于點M,N.若MB=8,NC=6,則MN的長是( 。
A.10B.8C.14D.6

分析 由∠ABC、∠ACB的平分線相交于點O,∠MBO=∠OBC,∠OCN=∠OCB,利用兩直線平行,內(nèi)錯角相等,利用等量代換可∠MBO=∠MOB,∠NOC=∠OCN,然后即可求得結(jié)論.

解答 解:∵∠ABC、∠ACB的平分線相交于點O,
∴∠MBO=∠OBC,∠OCN=∠OCB,
∵MN∥BC,
∴∠OBC=∠MOB,∠NOC=∠OCB,
∴∠MBO=∠MOB,∠NOC=∠OCN,
∴BM=MO,ON=CN,
∴MN=MO+ON,
即MN=BM+CN.
∵MB=8,NC=6,
∴MN=14,
故選:C.

點評 本題考查了角平分線性質(zhì)、平行線性質(zhì)、以及等角對等邊的性質(zhì)等.進行線段的等量代換是正確解答本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:解答題

1.如果3×27n×81n=322,求n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.如圖1,在平面直角坐標系中,已知拋物線y=ax2+bx+c的圖象與x軸交于原點和點B(4,0),點A落在拋物線上,且OA=2,∠AOB=60°.
(1)則點A坐標為(1,$\sqrt{3}$),二次函數(shù)的解析式為y=-$\frac{\sqrt{3}}{3}$x2+$\frac{4\sqrt{3}}{3}$x.
(2)求證:△OAB為直角三角形.
(3)如圖2:將△OAB繞著點A逆時針旋轉(zhuǎn)90°得到△O1AB1,作出△O1AB1的外接圓⊙D,B1O1所在直線交x軸于點E.
①求點D的坐標;
②已知C(0,-3),連接BC,問:直線BC與圓D是否相切,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

7.如圖,已知Rt△ABC中,∠C=90°,AC=8.BC=6,點P以每秒1個單位的速度從
A向C運動,同時點Q以每秒2個單位的速度從A→B→C方向運動,它們到C點后都
停止運動,設(shè)點P、Q運動的時間為t秒.
(Ⅰ)在運動過程中,請你用t表示P、Q兩點間的距離,并求出P、Q兩點間的距離
的最大值;
(Ⅱ)經(jīng)過t秒的運動,求△ABC被直線PQ掃過的面積S與時間t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

14.如圖,已知平行四邊形ABCD,點M、N是邊DC、BC的中點,設(shè)$\overrightarrow{AB}$=$\overrightarrow a$,$\overrightarrow{AD}$=$\overrightarrow b$;
(1)求向量$\overrightarrow{MN}$(用向量$\overrightarrow a$、$\overrightarrow b$表示);
(2)在圖中求作向量$\overrightarrow{MN}$在$\overrightarrow{AB}$、$\overrightarrow{AD}$方向上的分向量;(不要求寫作法,但要指出所作圖中表示結(jié)論的向量)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

4.如圖,將一副三角板的直角頂點重合,若∠AOD=145°,則∠BOC=35°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,直線AB、CD相交于點O,OE平分∠BOD,且∠AOC=∠COB-40°,求∠BOE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

8.如圖所示,將圖沿線折起來,得到一個正方體,那么“我”的對面是數(shù)(填漢字)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.計算:
(1)3×(-4)+18÷(-6)
(2)(-2)2×5+(-2)3÷4.

查看答案和解析>>

同步練習冊答案