【題目】如圖,O為直線AB上一點(diǎn),∠AOC58°,OD平分∠AOC,∠DOE90°

1)求出∠BOD的度數(shù);

2)請(qǐng)通過(guò)計(jì)算說(shuō)明:OE是否平分∠BOC

【答案】1)∠BOD151°;(2)見(jiàn)解析;

【解析】

1)根據(jù)∠AOC=58°,OD平分∠AOC求出∠AOD的度數(shù),再根據(jù)鄰補(bǔ)角的定義即可得出∠BOD的度數(shù);
2)根據(jù)∠AOC=58°求出∠BOC的度數(shù),再由OD平分∠AOC求出∠DOC的度數(shù),根據(jù)∠DOC與∠COE互余,即可得出∠COE的度數(shù),進(jìn)而可得出結(jié)論.

1∵∠AOC58°,OD平分∠AOC,

∴∠AOD∠AOC =29°,

∴∠BOD180°∠AOD =180°29°151°;

2OE∠BOC的平分線.理由如下:

∵∠AOC58°,

∴∠BOC122°

∵OD平分∠AOC,

∴∠DOC×58°29°

∵∠DOE90°

∴∠COE90°29°61°,

∴∠COE∠BOC,即OE∠BOC的平分線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知A. B兩地果園分別有蘋(píng)果30噸和40噸,C. D兩地的農(nóng)貿(mào)市場(chǎng)分別需求蘋(píng)果20噸和50噸。已知從A. B兩地到C. D兩地的運(yùn)價(jià)如表:

(1)填空:若從A果園運(yùn)到C地的蘋(píng)果為10噸,則從A果園運(yùn)到D地的蘋(píng)果為___噸,從B果園運(yùn)到C地的蘋(píng)果為___噸,從B果園運(yùn)到D地的蘋(píng)果為___噸,總運(yùn)輸費(fèi)為___元;

(2)如果總運(yùn)輸費(fèi)為750元時(shí),那么從A果園運(yùn)到C地的蘋(píng)果為多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】右圖是某商品的標(biāo)志圖案,AC與BD是⊙O的兩條直徑,首尾順次連接點(diǎn)A、B、C、D,得到四邊形ABCD.若AC=10cm,∠BAC=36°,則圖中陰影部分的面積為( )

A. 5πcm2 B. 10πcm2 C. 15πcm2 D. 20πcm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司為獎(jiǎng)勵(lì)在趣味運(yùn)動(dòng)會(huì)上取得好成績(jī)的員工,計(jì)劃購(gòu)買(mǎi)甲、乙兩種獎(jiǎng)品共20件,其中甲種獎(jiǎng)品每件40元,乙種獎(jiǎng)品每件30元.

(1)如果購(gòu)買(mǎi)甲、乙兩種獎(jiǎng)品共花費(fèi)了650元,求甲、乙兩種獎(jiǎng)品各購(gòu)買(mǎi)了多少件;

(2)如果購(gòu)買(mǎi)乙種獎(jiǎng)品的件數(shù)不超過(guò)甲種獎(jiǎng)品件數(shù)的2倍,總花費(fèi)不超過(guò)680元,求該公司有哪幾種不同的購(gòu)買(mǎi)方案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在邊長(zhǎng)為a的正方形中挖掉一個(gè)邊長(zhǎng)為b的小正方形(a>b,把余下的部分剪拼成一個(gè)矩形(如圖),通過(guò)計(jì)算圖形(陰影部分)的面積,驗(yàn)證了一個(gè)等式,則這個(gè)等式是(

A.a2-b2=a+b)(a-b

B.a+b2=a2+2ab+b2

C.a-b2=a2-2ab+b2

D.a2-ab=aa-b

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在平面直角坐標(biāo)系中,是函數(shù)的圖像上一點(diǎn),y軸上一動(dòng)點(diǎn),四邊形ABPQ是正方形(點(diǎn)ABPQ按順時(shí)針?lè)较蚺帕校?/span>

1)求a的值;

2)如圖②,當(dāng)時(shí),求點(diǎn)P的坐標(biāo);

3)若點(diǎn)P也在函數(shù)的圖像上,求b的值;

4)設(shè)正方形ABPQ的中心為M,點(diǎn)N是函數(shù)的圖像上一點(diǎn),判斷以點(diǎn)PQMN為頂點(diǎn)的四邊形能否是正方形,如果能,請(qǐng)直接寫(xiě)出b的值,如果不能,請(qǐng)說(shuō)明理由。

圖① 圖② 備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程m為常數(shù))

1)求證:不論m為何值,該方程總有實(shí)數(shù)根;

2)若該方程有一個(gè)根是,求m的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一個(gè)正方形ABCD,點(diǎn)P是邊BC上一點(diǎn).繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)90°得到(點(diǎn)B,P的對(duì)應(yīng)點(diǎn)分別是

1)畫(huà)出旋轉(zhuǎn)后所得到的;

2)聯(lián)結(jié),設(shè),,試用表示的面積;

3)若的面積為18,的面積為5,試求PC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=12,BC=9,點(diǎn)E,G分別為邊AB,AD上的點(diǎn),若矩形AEFG與矩形ABCD相似,且相似比為,連接CF,則CF=   

查看答案和解析>>

同步練習(xí)冊(cè)答案