有一等腰直角三角形紙片,以它的對稱軸為折痕,將三角形對折,得到的三角形還是等腰直角三角形(如圖).依照上述方法將原等腰直角三角形折疊四次,所得小等腰直角三角形的周長是原等腰直角三角形周長的
1
4
1
4
倍.
分析:根據(jù)折疊的性質(zhì)可知折疊一次后得到的等腰直角三角形與原等腰直角三角形是相似三角形,再根據(jù)相似比求面積比.
解答:解:由于折疊一次后得到的等腰直角三角形與原等腰直角三角形是相似三角形,
得到的相似比=現(xiàn)在的斜邊:原來的斜邊=
2
2
,
∴折疊四次,所得小等腰直角三角形的周長是原等腰直角三角形周長的(
2
2
4=
1
4
倍.
故答案為:
1
4
點評:本題考查了翻折變換、等腰直角三角形及相似三角形的判定與性質(zhì),屬于規(guī)律型題目,解答本題需要得出折疊前后的相似比,有一定的難度.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

3、小紅將一張正方形的紅紙沿對角線對折后,得到等腰直角三角形,然后在這張重疊的紙上剪出一個非常漂亮的圖案,她拿出剪出的圖案請小冬猜,打開的圖案至少有
1
條對稱軸,至多有
4
條對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

將一張正方形的紙片沿對角線對折后,得到一個等腰直角三角形,在這個重合的紙上剪出一個圖案,打開后得到的圖案至少有( 。l對稱軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一張等腰直角三角形彩色紙如圖放置,已知AC=BC=cm,∠ACB=90°現(xiàn)要沿AB邊向上依次截取寬度均為2cm的長方形紙條,如圖所示.已知截得的長方形紙片中有一塊是正方形,則這塊正方形紙片是(     )
A.第五塊B.第六塊


C.第七塊D.第八塊

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在每個小正方形的邊長均為1個單位長度的方格紙中,有一條線段AB,點A、B均與小正方形的頂點重合.
(1)在圖中畫等腰直角三角形ABC(點C在小正方形的頂點上);
(2)直接寫出△ABC的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

將一張正方形的紙片沿對角線對折后,得到一個等腰直角三角形,在這個重合的紙上剪出一個圖案,打開后得到的圖案至少有( 。l對稱軸.
A.1B.2C.3D.4

查看答案和解析>>

同步練習(xí)冊答案