【題目】如圖,在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點作CE⊥BD于E,延長AF、EC交于點H,下列結論中:①AF=FH;②BO=BF;③CA=CH;④BE=3ED。正確的是( )
A. ②③ B. ②③④ C. ③④ D. ①②③④
【答案】B
【解析】求出OA=OC=OD=BD,求出∠ADB=30°,求出∠ABO=60°,得出等邊三角形AOB,求出AB=BO=AO=OD=OC=DC,推出BF=AB,求出∠H=∠CAH=15°,求出DE=EO,根據以上結論推出即可.
∵∠AFC=135°,CF與AH不垂直,
∴點F不是AH的中點,即AF≠FH, ∴①錯誤;
∵四邊形ABCD是矩形,
∴∠BAD=90°, ∵AD=,AB=1, ∴tan∠ADB= ,
∴∠ADB=30°, ∴∠ABO=60°,
∵四邊形ABCD是矩形,
,,,,∴AO=BO,
∴△ABO是等邊三角形,
∴AB=BO,,
∵AF平分∠BAD,
,
,
,
,
,
,
,∴②正確;
,,
,
,
,
,
,
,
,
∴③正確;
∵△AOB是等邊三角形,
,
∵四邊形ABCD是矩形,
,OB=OD,AB=CD,
∴DC=OC=OD,
,
,
即BE=3ED, ∴④正確;
即正確的有3個,
故選C.
科目:初中數學 來源: 題型:
【題目】某活動中心準備帶會員去龍?zhí)洞髰{谷一日游,1張兒童票和2張成人票共需190元,2張兒童票和3張成人票共需300元.解答下列問題:
(1)求每張兒童票和每張成人票各多少元?
(2)這個活動中心想帶50人去游玩,費用不超過3000元,并且出于安全考慮,兒童人數不能超過22人,請你幫助活動中心確立出游方案.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】先化簡,再求值:
(1)(x+2)(x﹣3)﹣x(x﹣4),其中x=﹣
(2)(a+b)(a﹣b)+(a+b)2﹣2a2 , 其中a=3,b=﹣ .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某數學小組的10位同學站成一列做報數游戲,規(guī)則是:從前面第一位同學開始,每位同學依次報自己順序數的倒數的2倍加1,第1位同學報( +1),第2位同學報( +1),第3位同學報( +1)…這樣得到的n個數的積為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】由于換季,一家服裝店的老板想將某服裝打折銷售,于是她和正在上七年級的兒子商量打折方案,下面是她和兒子商量時的對話情景:
媽媽:“兒子,每件衣服按標價的5折出售,可以嗎?”
兒子:“若每件衣服按標價的5折出售會虧本30元.”
媽媽:“那每件衣服按標價的8折出售呢?”
兒子:“若每件衣服按標價的8折出售將會賺60元.”
……
請根據上面的信息,解決問題:
(1)求這種服裝的標價.
(2)若要不虧本,至少打幾折?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將一張長方形紙片的一角斜折過去,頂點A落在A′處,BC為折痕,再將BE翻折過去與BA′重合,BD為折痕,那么兩條折痕的夾角∠CBD=度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在李村河治理工程實驗過程中,某工程隊接受一項開挖水渠的工程,所需天數y(天)與每天完成的工程量x(m/天)的函數關系圖象如圖所示,是雙曲線的一部分.
(1)請根據題意,求y與x之間的函數表達式;
(2)若該工程隊有2臺挖掘機,每臺挖掘機每天能夠開挖水渠15米,問該工程隊需用多少天才能完成此項任務?
(3)如果為了防汛工作的緊急需要,必須在一個月內(按30天計算)完成任務,那么每天至少要完成多少米?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com