【題目】如圖,正方形ABCO的邊長為,OAx軸正半軸的夾角為15°,點B在第一象限,點Dx軸的負半軸上,且滿足∠BDO15°,直線ykx+b經(jīng)過B、D兩點,則bk_____

【答案】2

【解析】

連接OB,過點BBEx軸于點E,根據(jù)正方形的性質(zhì)可得出∠AOB的度數(shù)及OB的長,結(jié)合三角形外角的性質(zhì)可得出∠BDO=∠DBO,利用等角對等邊可得出ODOB,進而可得出點D的坐標,在RtBOE中,通過解直角三角形可得出點B的坐標,由點B,D的坐標,利用待定系數(shù)法可求出kb的值,再將其代入(bk)中即可求出結(jié)論.

解:連接OB,過點BBEx軸于點E,如圖所示.

∵正方形ABCO的邊長為,

∴∠AOB45°,OBOA2

OAx軸正半軸的夾角為15°,

∴∠BOE45°﹣15°=30°.

又∵∠BDO15°,

∴∠DBO=∠BOE﹣∠BDO15°,

∴∠BDO=∠DBO,

ODOB2,

∴點D的坐標為(﹣20).

RtBOE中,OB2,∠BOE30°,

BEOB1,OE,

∴點B的坐標為(,1).

B,1),D(﹣2,0)代入ykx+b

得:,

解得:,

bk42﹣(2)=2

故答案為:2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,A,B兩個頂點在x軸上方,點C的坐標是(1,0),以點C為位似中心,在x軸的下方作△ABC的位似圖形,并把△ABC的邊長放大到原來的2倍,得到△A'B'C',設點B的對應點B'的橫坐標為2,則點B的橫坐標為(  )

A.1B.C.2D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(操作)BD是矩形ABCD的對角線,AB=4,BC=3.將BAD繞著點B順時針旋轉(zhuǎn)α度(α360°)得到BEF,點A、D的對應點分別為E、F.若點E落在BD上,如圖①,則DE=______

(探究)當點E落在線段DF上時,CDBE交于點G.其它條件不變,如圖②.

1)求證:ADB≌△EDB;

2CG的長為______

(拓展)連結(jié)CF,在BAD的旋轉(zhuǎn)過程中,設CEF的面積為S,直接寫出S的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=EDF=90°,△EDF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q

1)如圖,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;

2)如圖,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;

3)在(2)的條件下,BP=2,CQ=9,則BC的長為_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)與反比例函數(shù)的圖象在第一象限交于點,與軸的負半軸交于點,且

1)求一次函數(shù)的表達式;

2)在軸上是否存在一點,使得是以為腰的等腰三角形,若存在,求出點的坐標;若不存在,請說明理由.

3)反比例函數(shù)的圖象記為曲線,將向右平移3個單位長度,得曲線,則平移至處所掃過的面積是_________.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=x+4與坐標軸交于A,B兩點,OCAB于點CP是線段OC上的一個動點,連接AP,將線段AP繞點A逆時針旋轉(zhuǎn)45°,得到線段AP',連接CP',則線段CP'的最小值為(  )

A.B.1C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖拋物線y=ax2+3ax+ca0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標為(1,0),OC=3OB,


1)求拋物線的解析式;
2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
3)若點Ex軸上,點P在拋物線上.是否存在以AC,EP為頂點且以AC為一邊的平行四邊形?若存在,寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,蘭蘭站在河岸上的G點,看見河里有一只小船沿垂直于岸邊的方向劃過來,此時,測得小船C的俯角是∠FDC30°,若蘭蘭的眼睛與地面的距離是1.5米,BG1米,BG平行于AC所在的直線,迎水坡的坡度i43,坡高BE8米,求小船C到岸邊的距離CA的長.(參考數(shù)據(jù):≈1.7,結(jié)果保留一位小數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設二次函數(shù)y=ax-1)(x-a),其中a是常數(shù),且a0

1)當a=2時,試判斷點(-,-5)是否在該函數(shù)圖象上.

2)若函數(shù)的圖象經(jīng)過點(1,-4),求該函數(shù)的表達式.

3)當-1≤x+1時,yx的增大而減小,求a的取值范圍.

查看答案和解析>>

同步練習冊答案