已知一組正數(shù)x1,x2,x3,x4,x5的方差S2=
1
5
x21
+
x22
+
x23
+
x24
+
x25
-20),則關(guān)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2的說(shuō)法:(1)方差為S2;(2)平均數(shù)為2;(3)平均數(shù)為4;(4)方差為4S2,其中正確的說(shuō)法是( 。
A.(1)與(2)B.(1)與(3)C.(2)與(3)D.(3)與(4)
由方差的計(jì)算公式可得:S12=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]
=
1
n
[x12+x22+…+xn2-2(x1+x2+…+xn)•
.
x
+n
.
x
n2
]=
1
n
[x12+x22+…+xn2-2n
.
x
n2+n
.
x
n2]
=
1
n
[x12+x22+…+xn2]-
.
x
12
=
1
5
(x12+x22+x32+x42+x52-20),
可得平均數(shù)
.
x
1=2.
對(duì)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2,有
.
x
2=2+2=4,
其方差S22=
1
n
[(x1-
.
x
2+(x2-
.
x
2+…+(xn-
.
x
2]=S12
故選B.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一組正數(shù)x1,x2,x3,x4,x5的方差為:S2=
1
5
(x12+x22+x32+x42+x52-20),則關(guān)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2的說(shuō)法:①方差為S2;②平均數(shù)為2;③平均數(shù)為4;④方差為4S2.其中正確的說(shuō)法是( 。
A、①②B、①③C、②④D、③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知一組正數(shù)x1,x2,x3,x4,x5的方差S2=
1
5
x
2
1
+
x
2
2
+
x
2
3
+
x
2
4
+
x
2
5
-20),則關(guān)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2的說(shuō)法:(1)方差為S2;(2)平均數(shù)為2;(3)平均數(shù)為4;(4)方差為4S2,其中正確的說(shuō)法是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2008年安徽省合肥市第168中學(xué)自主招生考試數(shù)學(xué)試卷(解析版) 題型:選擇題

已知一組正數(shù)x1,x2,x3,x4,x5的方差S2=++++-20),則關(guān)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2的說(shuō)法:(1)方差為S2;(2)平均數(shù)為2;(3)平均數(shù)為4;(4)方差為4S2,其中正確的說(shuō)法是( )
A.(1)與(2)
B.(1)與(3)
C.(2)與(3)
D.(3)與(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009年浙江省寧波市余姚中學(xué)保送生選拔數(shù)學(xué)試卷(解析版) 題型:選擇題

已知一組正數(shù)x1,x2,x3,x4,x5的方差為:S2=(x12+x22+x32+x42+x52-20),則關(guān)于數(shù)據(jù)x1+2,x2+2,x3+2,x4+2,x5+2的說(shuō)法:①方差為S2;②平均數(shù)為2;③平均數(shù)為4;④方差為4S2.其中正確的說(shuō)法是( )
A.①②
B.①③
C.②④
D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案