【題目】問(wèn)題情境:如圖1,ABCD,PAB=130°,PCD=120°.求APC度數(shù).

小明的解題思路是:如圖2,過(guò)P作PEAB,通過(guò)平行線(xiàn)性質(zhì),可得APC=50°+60°=110°.

問(wèn)題遷移:

(1)如圖3,ADBC,點(diǎn)P在射線(xiàn)OM上運(yùn)動(dòng),當(dāng)點(diǎn)P在A、B兩點(diǎn)之間運(yùn)動(dòng)時(shí),ADP=α,BCP=β.試判斷CPD、α、β之間有何數(shù)量關(guān)系?請(qǐng)說(shuō)明理由;

(2)在(1)的條件下,如果點(diǎn)P在A、B兩點(diǎn)外側(cè)運(yùn)動(dòng)時(shí)(點(diǎn)P與點(diǎn)A、B、O三點(diǎn)不重合),請(qǐng)你直接寫(xiě)出CPD、α、β間的數(shù)量關(guān)系.

【答案】(1)CPD=α+β,理由見(jiàn)解析;

(2)當(dāng)P在BA延長(zhǎng)線(xiàn)時(shí),CPD=β﹣α;當(dāng)P在AB延長(zhǎng)線(xiàn)時(shí),CPD=α﹣β.

【解析】試題分析:(1)、首先過(guò)P作PEAD交CD于E,然后根據(jù)平行線(xiàn)的性質(zhì)得出∠α=DPE,β=CPE,從而得出所求的答案;(2)、根據(jù)第一題同樣的方法得出角度之間的關(guān)系,從而得出答案.

試題解析:(1)解:CPD=α+β,理由如下:

如圖3,過(guò)P作PEAD交CD于E,

ADBC,ADPEBC, ∴∠α=DPE,β=CPE,

∴∠CPD=DPE+CPE=α+β;

(2)當(dāng)P在BA延長(zhǎng)線(xiàn)時(shí),CPD=β﹣α;

當(dāng)P在AB延長(zhǎng)線(xiàn)時(shí),CPD=α﹣β.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)PAB上一動(dòng)點(diǎn)(不與A,B重合),對(duì)角線(xiàn)AC,BD相交于點(diǎn)O,過(guò)點(diǎn)P分別作AC,BD的垂線(xiàn),分別交ACBD于點(diǎn)E,F,交ADBC于點(diǎn)M,N.下列結(jié)論:①△APE≌△AME;PM+PN=AC;PE2+PF2=PO2;④△POF∽△BNF當(dāng)PMN∽△AMP時(shí),點(diǎn)PAB的中點(diǎn).其中正確的結(jié)論的個(gè)數(shù)有( 。﹤(gè).

A.5 B.4 C.3 D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】請(qǐng)將下列證明過(guò)程補(bǔ)充完整:

已知:如圖,點(diǎn)PCD上,已知∠BAP+∠APD=180°,∠1=∠2

求證:∠E=∠F

證明:∵∠BAP+∠APD=180°已知

∴∠BAP=

∵∠1=∠2(已知)

∴∠BAP﹣ = ﹣∠2

即∠3= (等式的性質(zhì))

∴AE∥PF

∴∠E=∠F

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平面直角坐標(biāo)系中,已知點(diǎn)A(﹣3,3),B(﹣5,1),C(﹣2,0),P(a,b)是ABC的邊AC上任意一點(diǎn),ABC經(jīng)過(guò)平移后得到A1B1C1,點(diǎn)P的對(duì)應(yīng)點(diǎn)為P1(a+6,b﹣2).

(1)平移后的三個(gè)頂點(diǎn)坐標(biāo)分別為:.A1( ),B1( ),C1( ).

(2)在上圖中畫(huà)出平移后三角形A1B1C1;

(3)畫(huà)出AOA1并求出AOA1的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=﹣ x2+mx+n與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線(xiàn)的對(duì)稱(chēng)軸交x軸于點(diǎn)D,已知A(﹣1,0),C(0,2).

(1)求拋物線(xiàn)的表達(dá)式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸上是否存在點(diǎn)P,使△PCD是以CD為腰的等腰三角形?如果存在,直接寫(xiě)出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)點(diǎn)E是線(xiàn)段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)E作x軸的垂線(xiàn)與拋物線(xiàn)相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把△ABC紙片沿DE折疊,當(dāng)點(diǎn)A落在四邊形BCED的外部時(shí),則∠A∠1∠2之間有一種數(shù)量關(guān)系始終保持不變,請(qǐng)?jiān)囍乙徽疫@個(gè)規(guī)律,你發(fā)現(xiàn)的規(guī)律是( )

A. 2∠A=∠1﹣∠2 B. 3∠A=2∠1﹣∠2

C. 3∠A=2∠1﹣∠2 D. ∠A=∠1﹣∠2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列事件中,是不可能事件的是

A.買(mǎi)一張電影票,座位號(hào)是奇數(shù) B.射擊運(yùn)動(dòng)員射擊一次,命中9環(huán)

C.明天會(huì)下雨 D.度量三角形的內(nèi)角和,結(jié)果是360°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明、小亮、小芳和兩個(gè)陌生人甲、乙同在如圖所示的地下車(chē)庫(kù)等電梯,已知兩個(gè)陌生人到1至4層的任意一層出電梯,并設(shè)甲在a層出電梯,乙在b層出電梯.
(1)請(qǐng)你用畫(huà)樹(shù)狀圖或列表法求出甲、乙二人在同一層樓出電梯的概率;
(2)小亮和小芳打賭說(shuō):“若甲、乙在同一層或相鄰樓層出電梯,則小亮勝,否則小芳勝”.該游戲是否公平?說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】等腰三角形一腰上的高與另一腰的夾角是50,則這個(gè)三角形的底角是( )

A. 70 B. 20 C. 70或20 D. 40或140

查看答案和解析>>

同步練習(xí)冊(cè)答案