某零售商在2010年廣州亞運(yùn)會(huì)期間購(gòu)進(jìn)一批“亞運(yùn)紀(jì)念T恤”,在銷售中發(fā)現(xiàn):該批T恤平均每天可售出20件,每件盈利40元.該零售商為了擴(kuò)大銷售量,加快資金周轉(zhuǎn)盈利,決定采取適當(dāng)?shù)慕祪r(jià)措施.已知每件T恤每降價(jià)1元,那么平均每天就可多售出2件.設(shè)每件T恤降價(jià)x元,每天的銷售量利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式;
(2)請(qǐng)把求出的二次函數(shù)配方成y=a(x+h)2+k式的形式,據(jù)此說(shuō)明:當(dāng)x取何值時(shí),每天獲得的利潤(rùn)最大,最大利潤(rùn)為多少?
(3)要想平均每天銷售這種T恤能盈利1200元,同時(shí)還要照顧到消費(fèi)者的利益,每件T恤應(yīng)降價(jià)多少元?
【答案】分析:(1)降價(jià)后每件T恤的利潤(rùn)為40-x,每天的銷售量為20+2x,即可列出關(guān)系式;
(2)根據(jù)二次函數(shù)的性質(zhì),解答出即可;
(3)由(2)得-2(x-15)2+1250=1200,解出x的值,分析、解答出即可;
解答:解:(1)根據(jù)題意得,
y=(40-x)(20+2x)=-2x2+60x+800;
(2)y=-2(x-15)2+1250,
∵a=-2<0,
∴當(dāng)x=15時(shí),y有最大值,
即當(dāng)x=15時(shí),每天獲利最大,最大利潤(rùn)為1250元;
(3)當(dāng)y=1200時(shí),-2(x-15)2+1250=1200,
解得,x1=10,x2=20,
∵要照顧到消費(fèi)者的利益,
∴取x2=20,
即每件T恤應(yīng)降價(jià)20元.
點(diǎn)評(píng):本題主要考查了二次函數(shù)在實(shí)際生活中的應(yīng)用,應(yīng)熟練掌握二次函數(shù)的性質(zhì)求最值.
科目:初中數(shù)學(xué)
來(lái)源:2010-2011學(xué)年河北省保定市九年級(jí)(上)期末數(shù)學(xué)試卷(解析版)
題型:解答題
某零售商在2010年廣州亞運(yùn)會(huì)期間購(gòu)進(jìn)一批“亞運(yùn)紀(jì)念T恤”,在銷售中發(fā)現(xiàn):該批“亞運(yùn)紀(jì)念T恤”平均每天可售出20件,每件盈利40元.該零售商為了擴(kuò)大銷售量,加快資金周轉(zhuǎn)增加盈利,決定采取適當(dāng)?shù)慕祪r(jià)措施.如果每件“亞運(yùn)紀(jì)念T恤”每降價(jià)1元,那么平均每天就可多售出2件.要想平均每天銷售這種“亞運(yùn)紀(jì)念T恤”能盈利1200元,那么每件“亞運(yùn)紀(jì)念T恤”應(yīng)降價(jià)多少元?
查看答案和解析>>