【題目】一個安裝了兩個進水管和一個出水管的容器,每分鐘的進水量和出水量是兩個常數(shù),且兩個進水管的進水速度相同.進水管和出水管的進出水速度如圖1所示,某時刻開始到6分鐘(至少打開一個水管),該容器的水量y(單位:升)與時間x如圖2所示.

1)試判斷01分、1分到4分、4分到6分這三個時間段的進水管和出水管打開的情況.

2)求4≤x≤6時,yx變化的函數(shù)關系式.

36分鐘后,若同時打開兩個水管,則10分鐘時容器的水量是多少升?

【答案】101分,打開一個進水管,打開一個出水管,1分到4分,兩個進水管和一個出水管全部打開,4分到6分,打開兩個進水管,關閉出水管;(2y=2x-4;(316升.

【解析】

解:(101分,打開一個進水管, 打開一個出水管

1分到4分,兩個進水管和一個出水管全部打開

4分到6分,打開兩個進水管,關閉出水管……………………3

2)當4≤x≤6時,函數(shù)圖象過點(4,4)(6,8. ………………………1

設解析式為,依題意得:………………………2

解得:………………………4

函數(shù)解析式為………………………5

3)若同時打開一個進水管,一個出水管,則10分鐘時容器的水量是8+-1×4=4

…………………… 2

若同時打開兩個進水管,則10分鐘時容器的水量是8+2×4=16……………4

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測到我漁船C在東北方向上的我國某傳統(tǒng)漁場.若漁政310船航向不變,航行半小時后到達B處,此時觀測到我漁船C在北偏東30°方向上.問漁政310船再航行多久,離我漁船C的距離最近?(假設我漁船C捕魚時移動距離忽略不計,結果不取近似值.)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)學實踐活動小組要測量學校附近樓房CD的高度,在水平地面A處安置測傾器測得樓房CD頂部點D的仰角為45°,向前走20米到達A′處,測得點D的仰角為67.5°,已知測傾器AB的高度為1.6米,則樓房CD的高度約為(結果精確到0.1米, ≈1.414)( )

A.34.14米
B.34.1米
C.35.7米
D.35.74米

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】物理興趣小組20位同學在實驗操作中的得分情況如下表:(Ⅰ)求這組數(shù)據(jù)的眾數(shù)、中位數(shù);(Ⅱ)求這組數(shù)據(jù)的平均數(shù);(Ⅲ)將此次操作得分按人數(shù)制成如圖所示的扇形統(tǒng)計圖.扇形①的圓心角度數(shù)是多少?

得分(分)

10

9

8

7

人數(shù)(人)

5

8

4

3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC 中,A=60°ACB=40°,DBC邊延長線上一點,BM平分ABCE為射線BM上一點.

1)如圖1,連接CE,

CEAB,求BEC的度數(shù);

CE平分ACD,求BEC的度數(shù).

2)若直線CE垂直于ABC的一邊,請直接寫出BEC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a=﹣(﹣22×3,b|9|+7,c

1)求3[a﹣(b+c]2[b﹣(a2c]的值.

2)若A×132,B|a|b+c,試比較AB的大。

3)如圖,已知點D是線段AC的中點,點B是線段DC上的一點,且CBBD23,若ABcm,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將兩塊直角三角板的直角頂點C疊放在一起.

(1)若∠DCE28°10',求∠ACB的度數(shù);

(2)若∠ACB148°21',求∠DCE的度數(shù);

(3)直接寫出∠ACB與∠DCE的數(shù)量關系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂總D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(結果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)

(1)求∠BCD的度數(shù).
(2)求教學樓的高BD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方2 米處的點C出發(fā),沿斜面坡度i=1: 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈ ,cos37°≈ ,tan37°≈ .計算結果保留根號)

查看答案和解析>>

同步練習冊答案