【題目】一個安裝了兩個進水管和一個出水管的容器,每分鐘的進水量和出水量是兩個常數(shù),且兩個進水管的進水速度相同.進水管和出水管的進出水速度如圖1所示,某時刻開始到6分鐘(至少打開一個水管),該容器的水量y(單位:升)與時間x如圖2所示.
(1)試判斷0到1分、1分到4分、4分到6分這三個時間段的進水管和出水管打開的情況.
(2)求4≤x≤6時,y隨x變化的函數(shù)關系式.
(3)6分鐘后,若同時打開兩個水管,則10分鐘時容器的水量是多少升?
【答案】1)0到1分,打開一個進水管,打開一個出水管,1分到4分,兩個進水管和一個出水管全部打開,4分到6分,打開兩個進水管,關閉出水管;(2)y=2x-4;(3)16升.
【解析】
解:(1) 0到1分,打開一個進水管, 打開一個出水管
1分到4分,兩個進水管和一個出水管全部打開
4分到6分,打開兩個進水管,關閉出水管……………………3分
(2)當4≤x≤6時,函數(shù)圖象過點(4,4)(6,8). ………………………1分
設解析式為,依題意得:………………………2分
解得:………………………4分
∴函數(shù)解析式為………………………5分
(3)若同時打開一個進水管,一個出水管,則10分鐘時容器的水量是8+(-1)×4=4升
…………………… 2分
若同時打開兩個進水管,則10分鐘時容器的水量是8+2×4=16升……………4分
科目:初中數(shù)學 來源: 題型:
【題目】如圖,我漁政310船在南海海面上沿正東方向勻速航行,在A地觀測到我漁船C在東北方向上的我國某傳統(tǒng)漁場.若漁政310船航向不變,航行半小時后到達B處,此時觀測到我漁船C在北偏東30°方向上.問漁政310船再航行多久,離我漁船C的距離最近?(假設我漁船C捕魚時移動距離忽略不計,結果不取近似值.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,數(shù)學實踐活動小組要測量學校附近樓房CD的高度,在水平地面A處安置測傾器測得樓房CD頂部點D的仰角為45°,向前走20米到達A′處,測得點D的仰角為67.5°,已知測傾器AB的高度為1.6米,則樓房CD的高度約為(結果精確到0.1米, ≈1.414)( )
A.34.14米
B.34.1米
C.35.7米
D.35.74米
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】物理興趣小組20位同學在實驗操作中的得分情況如下表:(Ⅰ)求這組數(shù)據(jù)的眾數(shù)、中位數(shù);(Ⅱ)求這組數(shù)據(jù)的平均數(shù);(Ⅲ)將此次操作得分按人數(shù)制成如圖所示的扇形統(tǒng)計圖.扇形①的圓心角度數(shù)是多少?
得分(分) | 10 | 9 | 8 | 7 |
人數(shù)(人) | 5 | 8 | 4 | 3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC 中,∠A=60°,∠ACB=40°,D為BC邊延長線上一點,BM平分∠ABC,E為射線BM上一點.
(1)如圖1,連接CE,
①若CE∥AB,求∠BEC的度數(shù);
②若CE平分∠ACD,求∠BEC的度數(shù).
(2)若直線CE垂直于△ABC的一邊,請直接寫出∠BEC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知a=﹣(﹣2)2×3,b=|﹣9|+7,c=.
(1)求3[a﹣(b+c)]﹣2[b﹣(a﹣2c)]的值.
(2)若A=×(1﹣3)2,B=|a|﹣b+c,試比較A和B的大。
(3)如圖,已知點D是線段AC的中點,點B是線段DC上的一點,且CB:BD=2:3,若AB=cm,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將兩塊直角三角板的直角頂點C疊放在一起.
(1)若∠DCE=28°10',求∠ACB的度數(shù);
(2)若∠ACB=148°21',求∠DCE的度數(shù);
(3)直接寫出∠ACB與∠DCE的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,學校的實驗樓對面是一幢教學樓,小敏在實驗樓的窗口C測得教學樓頂總D的仰角為18°,教學樓底部B的俯角為20°,量得實驗樓與教學樓之間的距離AB=30m.
(結果精確到0.1m。參考數(shù)據(jù):tan20°≈0.36,tan18°≈0.32)
(1)求∠BCD的度數(shù).
(2)求教學樓的高BD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某數(shù)學活動小組為測量學校旗桿AB的高度,沿旗桿正前方2 米處的點C出發(fā),沿斜面坡度i=1: 的斜坡CD前進4米到達點D,在點D處安置測角儀,測得旗桿頂部A的仰角為37°,量得儀器的高DE為1.5米.已知A、B、C、D、E在同一平面內(nèi),AB⊥BC,AB∥DE.求旗桿AB的高度.(參考數(shù)據(jù):sin37°≈ ,cos37°≈ ,tan37°≈ .計算結果保留根號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com