【題目】如圖,∠CAB=∠DAB下列條件中不能使△ABC≌△ABD的是( )
A. ∠C=∠D B. ∠ABC=∠ABD C. AC=AD D. BC=BD
【答案】D
【解析】
根據(jù)題目中的已知條件AB=AB, ∠CAB=∠DAB,再結(jié)合題目中所給選項(xiàng)中的條件, 利用全等三角形的判定定理進(jìn)行分析即可.
有條件AB=AB, ∠CAB=∠DAB ,
A. 再加上∠C=∠D 可利用 AAS可證明 △ABC≌△ABD , 故此選項(xiàng)不合題意;
B. 再加上條件∠ABC=∠ABD可利用AAS可證明△ABC≌△ABD, 故此選項(xiàng)不合題意;
C. 再加上條件AC=AD 可利用SAS可證明△ABC≌△ABD, 故此選項(xiàng)不符合題意;
D.再加上條件BC=BD 不能證明△ABC≌△ABD , 故此選項(xiàng)合題意;
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某人在山坡坡腳C處測(cè)得一座建筑物頂點(diǎn)A的仰角為63.4°,沿山坡向上走到P處再測(cè)得該建筑物頂點(diǎn)A的仰角為53°.已知BC=90米,且B、C、D在同一條直線上,山坡坡度i=5:12.
(1)求此人所在位置點(diǎn)P的鉛直高度.(結(jié)果精確到0.1米)
(2)求此人從所在位置點(diǎn)P走到建筑物底部B點(diǎn)的路程(結(jié)果精確到0.1米)
(測(cè)傾器的高度忽略不計(jì),參考數(shù)據(jù):tan53°≈,tan63.5°≈2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象經(jīng)過三個(gè)點(diǎn)A(﹣4,﹣3),B(2m,y1),C(6m,y2),其中m>0.
(1)當(dāng)y1﹣y2=4時(shí),求m的值;
(2)如圖,過點(diǎn)B、C分別作x軸、y軸的垂線,兩垂線相交于點(diǎn)D,點(diǎn)P在x軸上,若三角形PBD的面積是8,請(qǐng)寫出點(diǎn)P坐標(biāo)(不需要寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長(zhǎng),分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,求菱形AECF的邊長(zhǎng)和面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,△ABC中,AD⊥BC于D,BE是三角形的角平分線,交AD于F.
(1)若∠ABC=40°, 求∠AFE的度數(shù).
(2)若∠BAC是直角,請(qǐng)猜想:△AFE的形狀,并寫出證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)滿足下列條件:①拋物線y=ax2+bx與直線y=x只有一個(gè)交點(diǎn);②對(duì)于任意實(shí)數(shù)x,a(-x+5)2+b(-x+5)=a(x-3)2+b(x-3)都成立.
(1)求二次函數(shù)y=ax2+bx的解析式;
(2)若當(dāng)-2≤x≤r(r≠0)時(shí),恰有t≤y≤1.5r成立,求t和r的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點(diǎn)D、E.
(1)若AC=12,BC=15,求△ABD的周長(zhǎng);
(2)若∠B=20°,求∠BAD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,等腰Rt△ABC,等腰Rt△ADE,AB⊥AC,AD⊥AE,AB=AC,AD=AE,CD交AE、BE分別于點(diǎn)M、F
(1)求證:△DAC≌△EAB;
(2)若∠AEF=15°,EF=4,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,K是正方形ABCD內(nèi)一點(diǎn),以AK為一邊作正方形AKLM,使L,M,D在AK的同旁,連接BK和DM,試用旋轉(zhuǎn)的思想說明線段BK與DM的關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com